scholarly journals Analysis of Wear Resistance of Borided Steel C45

Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5529
Author(s):  
Mykhaylo Pashechko ◽  
Krzysztof Dziedzic ◽  
Jerzy Jozwik

The wear resistance of diffusion coatings in conditions of specific pressures of 3, 7 and 10 MPa was studied. The boride coatings were prepared by means of diffusion methods using C45 steel as the substrate material. Research on the microstructure and redistribution of chemical elements on wear surface of a borided layer was carried out. It was found that the boride coatings should be used under a specific pressure of 7 MPa. It was found that the wear of friction couple coating of steel C45 under specific pressure of 3 MPa proceeds according to the oxidation wear mechanism, while under specific pressures of 7 and 10 MPa the abrasive wear prevails. The wear-induced segregation of atoms in coatings was studied using secondary mass-spectroscopy method (SIMS). Increased C, O, and B concentrations were noticed at the wear surface on depth from 50 to 2000 Å. The secondary wear-induced structure formation on the wear surface resulted in high wear resistance of diffusion borided coatings.

2014 ◽  
Vol 548-549 ◽  
pp. 417-421 ◽  
Author(s):  
Anatoliy Stepanovich Vereschaka ◽  
Alexey Anatolevich Vereschaka ◽  
Mars S. Migranov

One of the effective ways to improve the efficiency of cutting tools is the use of innovative types of multilayer coatings combining friction properties and high wear resistance. The object of study of this work was to investigate the influence of the composition of sublayer with anti-friction properties like component functional multilayer coatings on tool life. The data obtained in these studies were the basis for the development of the concept of functional multilayer coatings for cutting tools with programmable properties, providing an opportunity for each coating layer to perform a required function at a certain stage of tool wear. As used HSS substrate which is preliminarily subjected to ion nitriding by glow discharge and in addition alloyed gas-metal ions before coating deposition. The final step involved coating deposition process TiCrN using filtered cathodic vacuum arc deposition (FCVAD). Studies have shown that mixing the antifriction alloys which are widely used to improve friction properties allow to increase the tool life is not more than two times. This method of the tool life increase by reducing the shear strength of boundary adhesion between the tool and the work material does not seem to be the most effective for multilayered coatings under analysis, as for almost all studied anti-friction materials, the adhesion between the coating and the modified surface was rather low. This precludes their practical application due to technological reasons. Implantation the chemical elements can achieve much better results. Elements such as indium, silver and nitrogen increase tool life in 2 - 3 times for different cutting conditions (using dry cutting or cutting with cutting fluid). The obtained results can be considered as the most promising. Indium and silver are interactive with respect to Fe and may be used as lubricants in metal and promote a crushed chip forming at cutting using coating under the study. Ion surface modification of the tool with other studied elements demonstrates unstable or negative results that reduction in tool life or inability to provide good adhesion between the coating and substrate.


Alloy Digest ◽  
2020 ◽  
Vol 69 (8) ◽  

Abstract Lucefin Group 16MnCr5 and 16MnCrS5 are low-carbon, 1.2Mn-1Cr, alloy case-hardening steels that are used in the carburized or carbonitrided, and subsequently quench hardened and tempered condition. In general, these steels are used for small and medium size parts requiring high wear resistance and fatigue strength. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on forming, heat treating, machining, and joining. Filing Code: SA-864. Producer or Source: Lucefin S.p.A.


Alloy Digest ◽  
1963 ◽  
Vol 12 (2) ◽  

Abstract BETHLEHEM AIR-4 is a medium alloy air-hardening tool steel having low deformation, high wear resistance and hardness, deep hardening properties and adequate toughness for severe service. It has excellent free-machining characteristics. This datasheet provides information on composition, physical properties, hardness, and elasticity. It also includes information on forming, heat treating, machining, and joining. Filing Code: TS-129. Producer or source: Bethlehem Steel Corporation.


Alloy Digest ◽  
2015 ◽  
Vol 64 (12) ◽  

Abstract Böhler (or Boehler) M261 Extra is a precipitation hardening steel grade for plastic molds with good machinability in the precipitation hardened condition. It is used in the processing of plastics by offering high compressive stress and high wear resistance. This datasheet provides information on composition, physical properties, hardness, and elasticity. It also includes information on heat treating and machining. Filing Code: TS-732. Producer or source: Böhler Edelstahl GmbH & Company KG. See also Alloy Digest TS-736, September 2016.


Alloy Digest ◽  
2019 ◽  
Vol 68 (10) ◽  

Abstract YSS HAP72 is a powder metallurgy high-speed tool steel with a very high wear resistance. This datasheet provides information on composition, hardness, and bend strength. It also includes information on high temperature performance. Filing Code: TS-779. Producer or source: Hitachi Metals America Ltd.


Alloy Digest ◽  
2000 ◽  
Vol 49 (1) ◽  

Abstract Finkl WF-XTRA has high wear resistance while retaining moderate fracture toughness. The alloy is recommended for larger die blocks. The optimum diameter for hardenability is 838 mm (33 in.). It is appropriate for use in high-production hammers where die temperatures may be above average or in presses with moderately high operating temperatures. This datasheet provides information on composition, microstructure, hardness, and tensile properties as well as fracture toughness. It also includes information on heat treating, machining, and joining. Filing Code: TS-570. Producer or source: A. Finkl & Sons Company.


2020 ◽  
pp. 130-135
Author(s):  
D.N. Korotaev ◽  
K.N. Poleshchenko ◽  
E.N. Eremin ◽  
E.E. Tarasov

The wear resistance and wear characteristics of cluster-gradient architecture (CGA) nanostructured topocomposites are studied. The specifics of tribocontact interaction under microcutting conditions is considered. The reasons for retention of high wear resistance of this class of nanostructured topocomposites are studied. The mechanisms of energy dissipation from the tribocontact zone, due to the nanogeometry and the structural-phase structure of CGA topocomposites are analyzed. The role of triboactivated deformation and diffusion processes in providing increased wear resistance of carbide-based topocomposites is shown. They are tested under the conditions of blade processing of heat-resistant titanium alloy.


Author(s):  
J Li ◽  
L Q Zhang

The main objective of this article is to develop a high wear resistance carbon fibre (CF)-reinforced polyether ether ketone composite with the addition of multi-wall carbon nano-tubes (MWCNT). These compounds were well mixed in a Haake batch mixer and compounded polymers were fabricated into sheets of known thickness by compression moulding. Samples were tested for wear resistance with respect to different concentrations of fillers. Wear resistance of a composite with 20 wt% of CF increases when MWCNT was introduced. The worn surface features have been examined using a scanning electron microscope (SEM). Photomicrographs of the worn surfaces revealed higher wear resistance with the addition of carbon nanotubes. Also better interfacial adhesion between carbon and vinyl ester in a carbon-reinforced vinyl ester composite was observed.


2007 ◽  
Vol 539-543 ◽  
pp. 3261-3266 ◽  
Author(s):  
Iulian Radu ◽  
Dong Yang Li

The near-equiatomic TiNi alloy has been demonstrated to possess high wear resistance, which largely benefits from its pseudoelasticity (PE). However, the PE occurs only in a small temperature range, which makes the wear resistance of this alloy unstable as temperature changes, caused by environmental instability or frictional heating. Therefore, enlarging the working temperature of PE could considerably improve this alloy as a novel wear-resistant material. One possible approach is to develop a self-built temperature-dependent internal stress field by taking the advance of the difference in thermal expansion between the pseudoelastic matrix and a reinforcing phase. Such a T-dependent internal stress could adjust the martensitic transformation temperature to respond changes in environmental temperature so that the temperature range of PE could be enlarged, thus leading to a wide temperature range in which the minimum wear loss is retained. Research was conducted to investigate effects of an added second phase having a negative thermal expansion (NTE) coefficient on the wear resistance of a near-equiatomic TiNi alloy. It was demonstrated that the temperature range of this modified material in which the wear loss dropped was enlarged. In addition, the wear resistance of such a TiNi-matrix composite was on one order of magnitude higher than that of unmodified TiNi alloy.


Sign in / Sign up

Export Citation Format

Share Document