scholarly journals Abrasive Sensitivity of Martensitic and a Multi-Phase Steels under Different Abrasive Conditions

Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1343
Author(s):  
Ádám Kalácska ◽  
László Székely ◽  
Róbert Zsolt Keresztes ◽  
András Gábora ◽  
Tamás Mankovits ◽  
...  

The wear behaviour of two martensitic and one multiphase steel targeted for abrasion and erosion applications in agriculture and mining industry were investigated in three abrasive test systems with different complexity. Scratch tests were performed with different indenter radii, shapes, and loads. The material behaviour was also investigated in multi-asperity contact systems. Pin-on-disc tests were performed with various loads and abrasive particles, as well as abrasive slurry-pot tests with different sliding velocities, distances, and impact angles of the abrasive media were performed. Comparing the test systems, the tested materials ranked similarly based on their wear performance, however, in each configuration, the dominant variable of the wear mechanism differed. The significance and contributions of test paramecenterters, the material’s mechanical properties (H, σM, σY, E, εεM, εεB, W, σc, Ec) and the dimensionless numbers formed from them were investigated on the wear behaviour and the surface deformation. Correlation between parameters was established by multiple linear regression models. The sensitivity of the tested materials to abrasion was evaluated taking into account the wide range of influencing parameters.

Materials ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5239
Author(s):  
Hasan Muhandes ◽  
Ádám Kalácska ◽  
László Székely ◽  
Róbert Keresztes ◽  
Gábor Kalácska

Two different test systems were designed to evaluate the tribological behavior of five engineering plastics (Polyamide—PA grades and Ultra High Molecular Weight Polyethylene—UHMW-PE) and a fully degradable bio-composite (Polylactic Acid—PLA/hemp fibers) targeted to agricultural machinery abrasive conditions. Pin-on-plate tests were performed with different loads, sliding velocity and abrasive particles. The material response was further investigated in a slurry containing abrasive test system with different sliding velocities and distances, abrasive media compositions and impact angles. The abrasive wear, the change of the 3D surface roughness parameters, the friction force and contact temperature evolution were also analyzed as a function of the materials’ mechanical properties (H,E,σy,σc,εB,σF,σM) and the dimensionless numbers derived from them. Using the IBM SPSS 25 software, multiple linear regression models were used to statistically evaluate the measured data and to examine the sensitivity of the material properties and test system characteristics on the tribological behavior. For both test setups, the system and material characteristics influencing the dependent variables (wear, friction, heat generation) and the dimensionless numbers formed from the material properties were ranked using standardized regression coefficients derived from the regression models. The abrasion sensitivity of the tested materials were evaluated taking into account a wide range of influencing parameters.


2014 ◽  
Vol 550 ◽  
pp. 21-29
Author(s):  
M. Samuel Gemsprim ◽  
N. Babu ◽  
S. Parimala Murugaveni ◽  
P.R. Thyla

— The Zinc–Aluminium (ZA) family of casting alloys are gaining wide commercial importance as journal bearing material for high load and low speed applications. These alloys, most notably ZA-27 is capable of replacing traditional bronze bearing at low cost. Recently, the ZA-27 alloy has been substituted for conventional journal bearing materials in a wide range of industrial applications. The journal bearings produced from these alloys have been used in earthmoving equipments, mining and milling machines, cable winches and compressors. The ZA-27 alloys and the bearings were also used in heavy and dusty environments such as underground machines, ore crashers and rock drills.The tribological properties of the ZA 27 alloy were tested using a Pin-on-Disc friction and wear tribotester.Sliding wear tests were performed using the tribotester by varying load, speed & sliding distance. The same tests are done with lubricating condition and also with bio lubricants. The Bio-lubrication is adopted in this work because of its biodegradability and eco-friendly nature. Especially the soya bean oil possess good lubrication properties. The wear rate of dry, base oil and bio lubricant oil condition were determined different applied load, speed and sliding distance compared with each other.


2019 ◽  
Vol 6 (04) ◽  
Author(s):  
MINAKSHI SERAWAT ◽  
V K PHOGAT ◽  
ANIL Abdul KAPOOR ◽  
VIJAY KANT SINGH ◽  
ASHA SERAWAT

Soil crust strength influences seedling emergence, penetration and morphology of plant roots, and, consequently, crop yields. A study was carried out to assess the role of different soil properties on crust strength atHisar, Haryana, India. The soil samples from 0-5 and 5-15 cm depths were collected from 21 locations from farmer’s fields, having a wide range of texture.Soil propertieswere evaluated in the laboratory and theirinfluence on the modulus of rupture (MOR), which is the measure of crust strength, was evaluated.The MOR of texturally different soils was significantly correlated with saturated hydraulic conductivity at both the depths. Dispersion ratio was found to decrease with an increase in fineness of the texture of soil and the lowest value was recorded in silty clay loam soil,which decreased with depth. The modulus of rupture was significantly negatively correlative with the dispersion ratio.There was no role of calcium carbonate in influencing the values of MOR of soils. Similarly,the influence of pH, EC and SAR of soil solution on MOR was non-significant.A perusal of thevalues of the correlations between MOR and different soil properties showed that the MOR of soils of Haryana are positively correlated with silt + clay (r = 0.805) followed by water-stable aggregates (r = 0.774), organic carbon (r = 0.738), silt (r = 0.711), mean weight diameter (r = 0.608) and clay (r = 0.593) while negatively correlated with dispersion ratio (r = - 0.872), sand (r = -0.801) and hydraulic conductivity (r = -0.752) of soils.


Author(s):  
R. Gaudron ◽  
D. Yang ◽  
A. S. Morgans

Abstract Thermoacoustic instabilities can occur in a wide range of combustors and are prejudicial since they can lead to increased mechanical fatigue or even catastrophic failure. A well-established formalism to predict the onset, growth and saturation of such instabilities is based on acoustic network models. This approach has been successfully employed to predict the frequency and amplitude of limit cycle oscillations in a variety of combustors. However, it does not provide any physical insight in terms of the acoustic energy balance of the system. On the other hand, Rayleigh’s criterion may be used to quantify the losses, sources and transfers of acoustic energy within and at the boundaries of a combustor. However, this approach is cumbersome for most applications because it requires computing volume and surface integrals and averaging over an oscillation cycle. In this work, a new methodology for studying the acoustic energy balance of a combustor during the onset, growth and saturation of thermoacoustic instabilities is proposed. The two cornerstones of this new framework are the acoustic absorption coefficient Δ and the cycle-to-cycle acoustic energy ratio λ, both of which do not require computing integrals. Used along with a suitable acoustic network model, where the flame frequency response is described using the weakly nonlinear Flame Describing Function (FDF) formalism, these two dimensionless numbers are shown to characterize: 1) the variation of acoustic energy stored within the combustor between two consecutive cycles, 2) the acoustic energy transfers occurring at the combustor’s boundaries and 3) the sources and sinks of acoustic energy located within the combustor. The acoustic energy balance of the well-documented Palies burner is then analyzed during the onset, growth and saturation of thermoacoustic instabilities using this new methodology. It is demonstrated that this new approach allows a deeper understanding of the physical mechanisms at play. For instance, it is possible to determine when the flame acts as an acoustic energy source or sink, where acoustic damping is generated, and if acoustic energy is transmitted through the boundaries of the burner.


Author(s):  
Tore Butlin ◽  
Jim Woodhouse

Predictive models of friction-induced vibration have proved elusive despite decades of research. There are many mechanisms that can cause brake squeal; friction coupled systems can be highly sensitive to small perturbations; and the dynamic properties of friction at the contact zone seem to be poorly understood. This paper describes experimental and theoretical work aimed at identifying the key ingredients of a predictive model. A large-scale experiment was carried out to identify squeal initiations using a pin-on-disc test rig: approximately 30,000 squeal initiations were recorded, covering a very wide range of frequencies. The theoretical model allows for completely general linear systems coupled at a single sliding point by friction: squeal is predicted using a linearised stability analysis. Results will be presented that show that almost all observed squeal events can be predicted within this model framework, but that some subsets require innovative friction modelling: predictions are highly dependent on the particular choice of friction model and its associated parameters.


2007 ◽  
Vol 130 (1) ◽  
Author(s):  
Neelesh Deolalikar ◽  
Farshid Sadeghi ◽  
Sean Marble

Highly loaded ball and rolling element bearings are often required to operate in the mixed elastohydrodynamic lubrication regime in which surface asperity contact occurs simultaneously during the lubrication process. Predicting performance (i.e., pressure, temperature) of components operating in this regime is important as the high asperity contact pressures can significantly reduce the fatigue life of the interacting components. In this study, a deterministic mixed lubrication model was developed to determine the pressure and temperature of mixed lubricated circular and elliptic contacts for measured and simulated surfaces operating under pure rolling and rolling/sliding condition. In this model, we simultaneously solve for lubricant and asperity contact pressures. The model allows investigation of the condition and transition from boundary to full-film lubrication. The variation of contact area and load ratios is examined for various velocities and slide-to-roll ratios. The mixed lubricated model is also used to predict the transient flash temperatures occurring in contacts due to asperity contact interactions and friction. In order to significantly reduce the computational efforts associated with surface deformation and temperature calculation, the fast Fourier transform algorithm is implemented.


Author(s):  
Swathi Gorthi ◽  
Huifang Dou

This paper provides a survey on different kinds of prediction models developed for the estimation of soil moisture content of an area, using empirical information including meteorological and remotely sensed data. The different models employed extend over a wide range of machine learning techniques starting from Basic Linear Regression models through models based on Bayesian framework, Decision tree learning and Recursive partitioning, to the modern non-linear statistical data modeling tools like Artificial Neural Networks. The fundamental mathematical backgrounds, pros and cons, prediction results and efficiencies of all the models are discussed.


2016 ◽  
Vol 28 (9) ◽  
pp. 1513-1520 ◽  
Author(s):  
Asmus Vogel ◽  
Lise Cronberg Salem ◽  
Birgitte Bo Andersen ◽  
Gunhild Waldemar

ABSTRACTBackground:Cognitive complaints occur frequently in elderly people and may be a risk factor for dementia and cognitive decline. Results from studies on subjective cognitive decline are difficult to compare due to variability in assessment methods, and little is known about how different methods influence reports of cognitive decline.Methods:The Subjective Memory Complaints Scale (SMC) and The Memory Complaint Questionnaire (MAC-Q) were applied in 121 mixed memory clinic patients with mild cognitive symptoms (mean MMSE = 26.8, SD 2.7). The scales were applied independently and raters were blinded to results from the other scale. Scales were not used for diagnostic classification. Cognitive performances and depressive symptoms were also rated. We studied the association between the two measures and investigated the scales’ relation to depressive symptoms, age, and cognitive status.Results:SMC and MAC-Q were significantly associated (r = 0.44, N = 121, p = 0.015) and both scales had a wide range of scores. In this mixed cohort of patients, younger age was associated with higher SMC scores. There were no significant correlations between cognitive test performances and scales measuring subjective decline. Depression scores were significantly correlated to both scales measuring subjective decline. Linear regression models showed that age did not have a significant contribution to the variance in subjective memory beyond that of depressive symptoms.Conclusions:Measures for subjective cognitive decline are not interchangeable when used in memory clinics and the application of different scales in previous studies is an important factor as to why studies show variability in the association between subjective cognitive decline and background data and/or clinical results. Careful consideration should be taken as to which questions are relevant and have validity when operationalizing subjective cognitive decline.


Author(s):  
J Q Yao ◽  
D Dowson

In this two-part paper we consider the elastohydrodynamic lubrication (EHL) of soft-layered solids representing elliptical contacts. The problem has not previously attracted much attention, partly due to the lack of an effective numerical procedure to solve the coupled non-linear system of equations, but it is essential to the proper design of bearings with soft elastomeric liners and the full understanding of synovial joint lubrication. In Part 1, the elasticity analysis for the surface deformation of a low elastic modulus layer on a hard-backing half-space under various forms of normal loadings is considered, by means of both the rigorous Hankel transform method and various simplifications. For layers of compressible materials (v ≤ 0.4), a generalized foundation model described by a second-order differential equation is proposed to represent the relationship between the surface deformation and the applied pressure. The empirical equation developed in this study is valid for a very wide range of the aspect ratio of the contact and provides an alternative way of modelling the elastic deformation without recourse to the often tedious integration in the numerical analysis of the EHL problem. The simplest form (constrained column model) of the equation, where the surface deformation is directly proportional to the local applied pressure, was found to be reasonably accurate for compressible thin layers (the aspect ratio 2b/ht ≥ 5 and Poisson's ratio v ≤ 0.4).


2020 ◽  
Vol 201 ◽  
pp. 00001
Author(s):  
Gennadiy Pivnyak ◽  
Volodymyr Bondarenko ◽  
Iryna Kovalevska ◽  
Roman Lysenko ◽  
Olha Malova

The XIV International Research and Practice Conference “Ukrainian School of Mining Engineering” once again has made an important contribution to the mining industry, science and education. In the course of the conference, a wide range of problems was discussed: theoretical aspects of mining; domestic and foreign experience; personnel training in modern realities; problems of mineral deposits development; fundamental concepts of labor safety, etc. Fruitful dialogue and exchange of experience among conference participants contribute to the generation of new ideas, discoveries, technologies that will find their application in the nearest future. The formation of a new generation of scientists and engineers is taking place today, and therefore this representative conference is an important means of creating a new intellectual environment. The conference promotes the establishment of effective contacts between representatives of different scientific schools and directions, and the acquisition of invaluable experience and practice by researchers.


Sign in / Sign up

Export Citation Format

Share Document