scholarly journals Dimensional Analysis and Optimization of IsoTruss Structures with Outer Longitudinal Members in Uniaxial Compression

Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2079
Author(s):  
Hanna Opdahl ◽  
David Jensen

This study analyzes the buckling behavior of 8-node IsoTruss® structures with outer longitudinal members. IsoTruss structures are light-weight composite lattice columns with diverse structural applications, including the potential to replace rebar cages in reinforced concrete. In the current work, finite element analyses are used to predict the critical buckling loads of structures with various dimensions. A dimensional analysis is performed by: deriving non-dimensional Π variables using Buckingham’s Π Theorem; plotting the Π variables with respect to critical buckling loads to characterize trends between design parameters and buckling capacity; evaluating the performance of the outer longitudinal configuration with respect to the traditional, internal longitudinal configuration possessing the same bay length, outer diameter, longitudinal radius, helical radius, and mass. The dimensional analysis demonstrates that the buckling capacity of the inner configuration exceeds that of the equivalent outer longitudinal structure for the dimensions that are fixed and tested herein. A gradient-based optimization analysis is performed to minimize the mass of both configurations subject to equivalent load criteria. The optimized outer configuration has about 10.5% less mass than the inner configuration by reducing the outer diameter whilst maintaining the same global moment of inertia.

2010 ◽  
Vol 297-301 ◽  
pp. 984-989 ◽  
Author(s):  
S. Ebrahimi-Nejad ◽  
Ali Shokuhfar ◽  
A. Zare-Shahabadi

Boron Nitride nanotubes (BNNTs) together with carbon nanotubes (CNTs) have attracted the wide attention of the scientific community and have been considered as promising materials due to their unique structural and physical properties. In this paper, the behavior of BNNTs of different diameters under compressive loading has been studied through molecular dynamic (MD) simulations. We have used a Lennard-Jones pair potential to characterize the interactions between non-bonded atoms and harmonic potentials for bond stretching and bond angle vibrations. Results of the MD simulations determine the critical buckling loads of the BNNTs of various diameters under uniaxial compression, and indicate that for the simulated BNNTs of length L = 6 nm, the critical buckling loads increase by increasing the nanotube diameters.


Author(s):  
Srikanth Akkaram ◽  
Jean-Daniel Beley ◽  
Bob Maffeo ◽  
Gene Wiggs

The ability to perform and evaluate the effect of shape changes on the stress, modal and thermal response of components is an important ingredient in the ‘design’ of aircraft engine components. The classical design of experiments (DOE) based approach that is motivated from statistics (for physical experiments) is one of the possible approaches for the evaluation of the component response with respect to design parameters [1]. Since the underlying physical model used for the component response is deterministic and understood through a computer simulation model, one needs to re-think the use of the classical DOE techniques for this class of problems. In this paper, we explore an alternate sensitivity analysis based technique where a deterministic parametric response is constructed using exact derivatives of the complex finite-element (FE) based computer models to design parameters. The method is based on a discrete sensitivity analysis formulation using semi-automatic differentiation [2,3] to compute the Taylor series or its Pade equivalent for finite element based responses. Shape design or optimization in the context of finite element modeling is challenging because the evaluation of the response for different shape requires the need for a meshing consistent with the new geometry. This paper examines the differences in the nature and performance (accuracy and efficiency) of the analytical derivatives approach against other existing approaches with validation on several benchmark structural applications. The use of analytical derivatives for parametric analysis is demonstrated to have accuracy benefits on certain classes of shape applications.


Author(s):  
Shuang Wang ◽  
John C. Brigham

This work presents a strategy to identify the optimal localized activation and actuation for a morphing thermally activated SMP structure or structural component to obtain a targeted shape change or set of shape features, subject to design objectives such as minimal total required energy and time. This strategy combines numerical representations of the SMP structure’s thermo-mechanical behavior subject to activation and actuation with gradient-based nonlinear optimization methods to solve the morphing inverse problem that includes minimizing cost functions which address thermal and mechanical energy, morphing time, and damage. In particular, the optimization strategy utilizes the adjoint method to efficiently compute the gradient of the objective functional(s) with respect to the design parameters for this coupled thermo-mechanical problem.


Author(s):  
Snegdha Gupta ◽  
Harish Hirani

Quick response and rheological properties as a function of magnetic field are well known features of MR fluids which inspire their usage as brake materials. Controllable torque and minimum weight of brake system are the deciding functions based on which the viability of the MR brake against the conventional hydraulic brake system can be judged. The aim of this study is to optimize a multi-disk magneto-rheological brake system considering torque and weight as objective functions and geometric dimensions of conventional hydraulic brake as constraints. The electric current accounting magnetic saturation, MR gap, number of disk, thickness of disk, and outer diameter of disk have been considered as design variables. To model the behavior of MR Fluid, Bingham and Herschel Bulkley models have been compared. To implement these models in estimating the braking torque a modification in shear rate dependent component has been proposed. The overall design of MR brake has been optimized using a hybrid (Genetic algorithm plus gradient based) optimization scheme of MATLAB software.


2021 ◽  
Author(s):  
A. Numić ◽  
T. W. A. Blad ◽  
F. van Keulen

Abstract In this paper, a novel method for stiffness compensation in compliant mechanisms is investigated. This method involves tuning the ratio between the first two critical buckling loads. To this end, the relative length and width of flexures in two architectures, a stepped beam and parallel guidance, are adjusted. Using finite element analysis, it is shown that by maximizing this ratio, the actuation force for transversal deflection in post-buckling is reduced. These results were validated experimentally by identifying the optimal designs in a given space and capturing the force-deflection characteristics of these mechanisms.


1999 ◽  
Author(s):  
Brian T. Wallace ◽  
Bhavani V. Sankar ◽  
Peter G. Ifju

Abstract The present study is concerned with translaminar reinforcement in a sandwich beam for preventing buckling of a delaminated face-sheet under axial compression. Graphite/epoxy pins are used as reinforcement in the thickness direction of sandwich beams consisting of graphite/epoxy face-sheets and a Aramid honeycomb core. Compression tests are performed to understand the effects of the diameter of the reinforcing pins and reinforcement spacing on the ultimate compressive strength of the delaminated beams. A finite element analysis is performed to understand the effects of translaminar reinforcement on the critical buckling loads and post-buckling behavior of the sandwich beam under axial compression.


2008 ◽  
Vol 2008 ◽  
pp. 1-8 ◽  
Author(s):  
D. L. Robinette ◽  
J. M. Schweitzer ◽  
D. G. Maddock ◽  
C. L. Anderson ◽  
J. R. Blough ◽  
...  

The objective of this investigation was to develop a dimensionless model for predicting the onset of cavitation in torque converters applicable to general converter designs. Dimensional analysis was applied to test results from a matrix of torque converters that ranged from populations comprised of strict geometric similitude to those with more relaxed similarities onto inclusion of all the torque converters tested. Stator torque thresholds at the onset of cavitation for the stall operating condition were experimentally determined with a dynamometer test cell using nearfield acoustical measurements. Cavitation torques, design parameters, and operating conditions were resolved into a set of dimensionless quantities for use in the development of dimensionless empirical models. A systematic relaxation of the fundamental principle of dimensional analysis, geometric similitude, was undertaken to present empirical models applicable to torque converter designs of increasingly diverse design parameters. A stepwise linear regression technique coupled with response surface methodology was utilized to produce an empirical model capable of predicting stator torque at the onset of cavitation with less than 7% error for general automotive torque converter designs.


Author(s):  
Vincenzo Russo ◽  
Simone Orsenigo ◽  
Lasse Mueller ◽  
Tom Verstraete ◽  
Sergio Lavagnoli

Abstract This work presents a 2D optimization of a multi-body turbine vane frame (TVF), a particular configuration that can lead to considerable shortening of the aero-engine shaft as well as weight reduction. Traditionally, the turbine vane frame is used to guide the flow from the high pressure (HP) turbine to the low pressure (LP) turbine. Current designs have a mid turbine frame equipped with non lifting bodies that have structural and servicing functions, while multi-body configurations are characterized by the fact that, in order to shorten the duct length, the mid turbine struts are merged with the LP stator vanes, traditionally located downstream. This design architecture consists therefore of a multi-body vane row, where lifting long-chord struts replace some of the low pressure vane airfoils. However, the bulky struts cause significant aerodynamics losses and penalize the aerodynamics of the small vanes. The objective of the present work is to numerically optimize a TVF geometry with multi-body architecture using a gradient based algorithm coupled with the adjoint approach, enabling the use of a rich design space. Steady-state CFD simulations have been used to this end. The aim of this study is to reduce the total pressure losses of the TVF, while imposing several aerodynamic and structural constraints. The parametrization of the TVF geometry represents the airfoil shapes and their relative pitch-wise positions. The outcome of the optimization is to evaluate the potential improvements introduced by the optimized TVF geometry and to quantify the influence of the different design parameters on the total pressure losses.


1997 ◽  
Vol 50 (11S) ◽  
pp. S3-S10 ◽  
Author(s):  
Leonel I. Alma´nzar ◽  
Luis A. Godoy

This paper presents a theory and applications to account for changes in the fundamental, buckling, and post-buckling states when design parameters of a composite material are modified. The influence of micro-mechanical parameters (the volume fraction and the fiber orientation) and of cross-sectional dimensions is investigated. A numerical example for columns made of composite materials is presented. Sensitivity is studied for local buckling loads. Explicit expressions are obtained for the sensitivities in the form of perturbation expansions. A beam under transverse load is also investigated, and geometric design parameters employed to investigate sensitivity. The information from the sensitivity analysis can be used to improve a design by modification of the buckling load.


2014 ◽  
Vol 592-594 ◽  
pp. 901-905
Author(s):  
Pankaj Kumar ◽  
Pandey Ramesh

The Paper presents the buckling response of composite annular plates with under uniform internal and external radial edge loads using energy method. For the equation of stability Trefftez rule is used. The paper consists of buckling behavior of laminate (90/0) s, influence of some parameters such as thickness, boundary condition, aspect ratio on buckling loads and modes are investigated. Present results are compared with other papers. In this paper the effect of % weight of carbon nanotube (MWCNT) on the buckling load is also investigated.


Sign in / Sign up

Export Citation Format

Share Document