scholarly journals Prediction and Analysis of Ultimate Bearing Capacity of Square CFST Long Column under Eccentric Compression after Acid Rain Corrosion

Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2568
Author(s):  
Xuetao Lyu ◽  
Liqiang Zhang ◽  
Tong Zhang ◽  
Ben Li ◽  
Huan Li ◽  
...  

This paper adopts the method of steel tube wall thickness and strength reduction to simulate corrosion damage. The numerical model of the square concrete-filled steel tube long column (SCFST-LC) under eccentric compression after acid rain corrosion is established in the finite element software, ABAQUS. The reliability and accuracy of the model are verified by comparing it with published relevant experimental results. The failure mode, load-deformation curve, and ultimate compressive load were analysed. Following that, the impacts of section size, yield strength of the steel tube, axial compressive strength of concrete, steel ratio, slenderness ratio, and load eccentricity on its ultimate compressive load are comprehensively investigated. The results demonstrate that the ultimate compressive load of the SCFST-LC decreases significantly with the increase in corrosion rate. The corrosion rate increases from 10 to 40%, and the ultimate bearing capacity decreases by 37.6%. Its ultimate bearing capacity can be enhanced due to the increase in section size, material strength, and steel ratio. In contrast, the ascending slenderness ratio and load eccentricity has harmful effects on the ultimate compressive load of the specimens. Finally, a simplified formula for the axial compressive load of the SCFST-LC under eccentric compression after acid rain corrosion is proposed. The calculation accuracy is high and the deviation of the results is basically within 15%, which is in good agreement with the numerical simulation results.

2011 ◽  
Vol 415-417 ◽  
pp. 1421-1426
Author(s):  
Xu Hong Zhang ◽  
Quan Quan Guo

The improvement effect of the external concrete to stability of the core steel-tube was demonstrated by the steel-tube replacement ratio through experimental study. The test results show that, with the steel-tube replacement ratio increasing, the ultimate bearing capacity of composite columns increased correspondingly, and the ductility of composite columns was improved obviously also. Therefore, the steel-tube replacement ratio should be involved in the formula for calculating the ultimate bearing capacity of composite columns. By finite element method and regression analysis, the slenderness ratio is amended by the steel-tube replacement ratio and the calculation results of the eccentric compression bearing capacity agreed well with the test results.


2011 ◽  
Vol 368-373 ◽  
pp. 369-372
Author(s):  
Zhu Yan Li ◽  
Yong Jun Liu ◽  
Dong Wang

The tests are order to investigate the axial compressive performance of the new circular hybrid Steel-Concrete- CFRP-Concrete column (simply called SCCC column).SCCC column is composed of steel tube, annular concrete, CFRP tube and core concrete. Axial ultimate bearing capacity test was performed on 3 SCCC columns, from which we gains the law of affecting SCCC columns, the load-strain curve and load-displacement curve of SCCC columns, and compare the test results of the test specimen with different annular concrete thicknesses, from which we finds that after the relationship curve of test specimen with small annular concrete thickness reaches yield load, the bearing capacity starts to decline, and then continues to rise till the ultimate load is reached and the test specimen is damaged. The result shows that the smaller the annular concrete thickness is, the greater the axial ultimate bearing capacity of SCCC column is, and also indicates that CFRP tube plays a role of binding and constraining to the core concrete in later period of loading the test specimens.


Buildings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 639
Author(s):  
Jun Wang ◽  
Yuxin Duan ◽  
Wenze Sun ◽  
Xinyu Yi

This paper investigates the eccentric compression performance of high-strength steel reinforced concrete (SRC) columns. In addition, the feasibility of the calculation codes used for the load-carrying capacity of these columns is verified by eccentric compression tests on 10 high-strength SRC columns with Q460 and Q690 steels and two normal SRC columns with Q235 steel. Moreover, the influence of the steel strength, relative eccentricity, steel ratio, and stirrup spacing on the bearing capacity and ductility of the specimens is analyzed. It was found that the bearing capacity and ductility of the specimens significantly increases when the steel strength increases from 276.5 MPa to 774.2 MPa; the bearing capacity of the Q690 SRC column is slightly higher than that of the Q460 SRC column. In addition, the ductility coefficient of the Q690 SRC columns is significantly higher than that of the Q460 SRC columns. It was also found that increasing the eccentricity and steel ratio can improve the ductility of the specimens and the smaller stirrup spacing can enlarge the contribution of Q690 steel under the ultimate bearing capacity. It is demonstrated that Eurocode 4-2004 and AISC360-16 codes significantly underestimate the test results. In contrast, JGJ138-2016 slightly underestimates the test results when the relative eccentricity is 0.2 but overestimates the test results when the relative eccentricity is 0.6. Furthermore, in order to maximize the contribution of Q690 steel under ultimate bearing capacity, the expanded parameter analysis is carried out using a finite element model. Following the analysis results, the suggestions for designing high-strength SRC columns under eccentric load are provided.


2013 ◽  
Vol 351-352 ◽  
pp. 237-240 ◽  
Author(s):  
Peng Niu ◽  
Xiao Chu Wang ◽  
Chun Fu Jin ◽  
Yong Qi Zhang

Based on Ježek method of computing the elastic-plastic buckling of the member under the axial compressive load and the bending moment, considering the initial imperfection, the analytical expressions of calculating the ultimate load of buckling about the neutral axis with the maximum moment of inertia for a square steel tube member are derived. Using the elastic-plastic finite element method and the theory of nonlinear buckling, the impact by initial geometric imperfections on the square steel tube member under the axial compressive load and the bending moment are analyzed and the numerical solutions of ultimate bearing capacity are obtained. By compared with the values of the finite element method (FEM), it shows that the analytical method in this paper is valid. The results of the example show that the presence of initial imperfections reduces the ultimate bearing capacity of the steel member to a great extent. It is also found that the influence of the initial geometric imperfection on the ultimate bearing capacity of member is smaller when the M increases.


2010 ◽  
Vol 163-167 ◽  
pp. 184-190
Author(s):  
Quan Quan Guo ◽  
Yu Xi Zhao ◽  
Kun Shang

Eccentric loading experiment of 13 steel tube-reinforced concrete columns and a reinforced concrete column is implemented. The whole process from the start load on the steel tube-reinforced concrete column until damage has been researched. Change of ultimate bearing capacity with eccentricity, longitudinal reinforcement ratio, position coefficient has been studied, and deflection curve and load-vertical displacement curve under eccentric compressive load were obtained. Failure characteristics of steel tube-reinforced concrete were divided into two different type, small eccentric damage and big eccentric damage. With the same conditions, when steel tube ratio of steel tube-reinforced concrete was 2%, its ultimate bearing capacity was nearly double of reinforced concrete columns.


2015 ◽  
Vol 744-746 ◽  
pp. 309-314
Author(s):  
Peng Niu ◽  
Hai Tao Wang ◽  
Chun Fu Jin ◽  
Ying Guo

Based on Ježek method of computing the elastic-plastic buckling of the members under the axial compressive load and the bending moment, considering the initial imperfection, the analytical expressions of calculating the ultimate load of buckling about the neutral axis with the maximum moment of inertia for an H-shaped member and a square steel tube member are derived. Using the elastic-plastic finite element method and the theory of nonlinear buckling, the impact by initial geometric imperfections on the H-shaped steel member and the square steel tube member under the axial compressive load and the bending moment are analyzed and the numerical solutions of ultimate bearing capacity are obtained. By compared with the values of the finite element method (FEM), it shows that the analytical method in this paper is valid. The results of the example show that the presence of initial imperfections reduces the ultimate bearing capacity of the two kinds of steel members to a great extent. It is also found that the influence of the initial geometric imperfection on the ultimate bearing capacity of members is smaller when the bending moment increases.


2016 ◽  
Vol 23 (5) ◽  
pp. 511-522
Author(s):  
Weifeng Zhao ◽  
Jing Zhou ◽  
Zhilin Long

AbstractThin-walled steel tube/bamboo-plywood composite hollow columns (SBCCs) have excellent physical and mechanical properties. The simple cross section of this composite makes it simple to process and suitable for industrial production. In this paper, axial and eccentric compression tests were conducted on 21 specimens to study the failure characteristics and maximum bearing capacity of this composite. The test results showed that compressive failure in an SBCC is primarily characterized by damage from glue failure at the matrix interface at the end of the column, internal damage of the bamboo-plywood material, damage from glue failure on the tension side in the middle of the column, and buckling damage to the plywood material on the compressive side. The overall adhesive strength between the matrixes primarily determined the failure mode. The maximum bearing capacity of the SBCC generally increased with the net cross-sectional area of the bamboo and decreased with the slenderness ratio and eccentricity. The hollow ratio reduced the slenderness ratio of the test specimens with the same net cross-sectional area of the bamboo and increased the critical compressive load, which significantly improved the compressive load capacity, as was reflected in the slenderness ratio. Finally, a model was formulated based on a non-linear regression analysis of the experimental data. The model was used to determine the allowable compressive capacity of an SBCC to provide guidance for engineering applications.


2008 ◽  
Vol 400-402 ◽  
pp. 513-518 ◽  
Author(s):  
Yong Chang Guo ◽  
Pei Yan Huang ◽  
Yang Yang ◽  
Li Juan Li

The improvement of the load carrying capacity of concrete columns under a triaxial compressive stress results from the strain restriction. Under a triaxial stress state, the capacity of the deformation of concrete is greatly decreased with the increase of the side compression. Therefore, confining the deformation in the lateral orientation is an effective way to improve the strength and ductility of concrete columns. This paper carried out an experimental investigation on axially loaded normal strength concrete columns confined by 10 different types of materials, including steel tube, glass fiber confined steel tube (GFRP), PVC tube, carbon fiber confined PVC tube (CFRP), glass fiber confined PVC tube (GFRP), CFRP, GFRP, polyethylene (PE), PE hybrid CFRP and PE hybrid GFRP. The deformation, macroscopical deformation characters, failure mechanism and failure modes are studied in this paper. The ultimate bearing capacity of these 10 types of confined concrete columns and the influences of the confining materials on the ultimate bearing capacity are obtained. The advantages and disadvantages of these 10 types of confining methods are compared.


2014 ◽  
Vol 578-579 ◽  
pp. 340-345
Author(s):  
Guo Chang Li ◽  
Bo Wen Zhu ◽  
Yu Liu

In this paper, using ABAQUS, 16 high-strength concrete filled high-strength square steel tube middle-long columns’ axial compression process were simulated. The load-deflection relationships were obtained and the new combination in improving the bearing capacity and plastic deformation has a great advantage. Realization of length variation slenderness ratio by changing the length of column, this paper also study the influence of slenderness ratio, the main parameters of the high-strength concrete filled high-strength square steel tube middle-long column. It is found that both bearing capacity and the plastic capacity are associated with slenderness ratio.


2016 ◽  
Vol 847 ◽  
pp. 38-45
Author(s):  
Xian Yan Zhou ◽  
Dan Zeng ◽  
Zhi Feng Wang

At present, the relevant researches of Glulam columns in China are mainly restricted to short columns. In order to study the mechanical properties of long columns under axial loading, an experimental study on five different slenderness ratios of Larch Glulam columns was carried out. With slenderness ratio changing, the variations of experimental data such as axial strain, lateral deflection at mid-height, ultimate bearing capacity, and peak strain were comparatively analyzed. The failure pattern and failure mechanism of long columns were discussed. The results indicate that the ultimate bearing capacity of Larch Glulam columns gradually decreases as the slenderness radio increases and the failure mode is gradually converted from strength failure to instability failure. The ultimate load reduction factor is obtained by regression analysis based on the experiment results of Larch Glulam short columns. The basis for design and application of Larch Glulam columns are provided.


Sign in / Sign up

Export Citation Format

Share Document