scholarly journals Recycled Cellulose Fiber Reinforced Plaster

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2986
Author(s):  
Nadezda Stevulova ◽  
Vojtech Vaclavik ◽  
Viola Hospodarova ◽  
Tomáš Dvorský

This paper aims to develop recycled fiber reinforced cement plaster mortar with a good workability of fresh mixture, and insulation, mechanical and adhesive properties of the final hardened product for indoor application. The effect of the incorporation of different portions of three types of cellulose fibers from waste paper recycling into cement mortar (cement/sand ratio of 1:3) on its properties of workability, as well as other physical and mechanical parameters, was studied. The waste paper fiber (WPF) samples were characterized by their different cellulose contents, degree of polymerization, and residues from paper-making. The cement to waste paper fiber mass ratios (C/WPF) ranged from 500:1 to 3:1, and significantly influenced the consistency, bulk density, thermal conductivity, water absorption behavior, and compressive and flexural strength of the fiber-cement mortars. The workability tests of the fiber-cement mortars containing less than 2% WPF achieved optimal properties corresponding to plastic mortars (140–200 mm). The development of dry bulk density and thermal conductivity values of 28-day hardened fiber-cement mortars was favorable with a declining C/WPF ratio, while increasing the fiber content in cement mortars led to a worsening of the water absorption behavior and a lower mechanical performance of the mortars. These key findings were related to a higher porosity and weaker adhesion of fibers and cement particles at the matrix-fiber interface. The adhesion ability of fiber-cement plastering mortar based on WPF samples with the highest cellulose content as a fine filler and two types of mixed hydraulic binder (cement with finely ground granulated blast furnace slag and natural limestone) on commonly used substrates, such as brick and aerated concrete blocks, was also investigated. The adhesive strength testing of these hardened fiber-cement plaster mortars on both substrates revealed lime-cement mortar to be more suitable for fine plaster. The different behavior of fiber-cement containing finely ground slag manifested in a greater depth of the plaster layer failure, crack formation, and in greater damage to the cohesion between the substrate and mortar for the observed time.

2020 ◽  
Vol 38 (10A) ◽  
pp. 1522-1530
Author(s):  
Rawnaq S. Mahdi ◽  
Aseel B. AL-Zubidi ◽  
Hassan N. Hashim

This work reports on the incorporation of Flint and Kaolin rocks powders in the cement mortar in an attempt to improve its mechanical properties and produce an eco-friendly mortar. Flint and Kaolin powders are prepared by dry mechanical milling. The two powders are added separately to the mortars substituting cement partially. The two powders are found to improve the mechanical properties of the mortars. Hardness and compressive strength are found to increase with the increase of powders constituents in the cement mortars. In addition, the two powders affect water absorption and thermal conductivity of the mortar specimens which are desirable for construction applications. Kaolin is found to have a greater effect on the mechanical properties, water absorption, and thermal conductivity of the mortars than Flint. This behavior is discussed and analyzed based on the compositional and structural properties of the rocks powders.


2013 ◽  
Vol 13 (2) ◽  
pp. 176-181 ◽  

This research paper focuses on the properties of laboratory made cement mortars modified with textile from worn automobile tires. Textile, in the form of fibres, has been added to cement mortars at various percentages of total cement mortar volume, which ranged from 0-2.0%. Properties of mortartextile- aggregates mixtures such as consistency-workability-, bulk density as well as mechanical ones such as dynamic modulus of elasticity, compressive and flexural strengths have been studied. Moreover, water absorption under vacuum and capillarity by suction of such mixtures have been measured, as a preliminary examination of cement mortars’ durability. The study of the mixtures has been completed by the observation of their microstructure. All properties have been tested according to European Specifications. Laboratory results showed that properties of cement mortars, modified with textile from worn automobile tires, were found to be familiar to the ones of the control mixture (with no additive). Incidentally, a solid waste material such as textile fibers from worn automobile tires can be utilized properly in cement products providing an opportunity to recycle non-reusable end of life tires and as a result contributing to the protection of the environment.


2018 ◽  
Vol 69 (8) ◽  
pp. 2040-2044
Author(s):  
Georgeta Velciu ◽  
Virgil Marinescu ◽  
Adriana Moanta ◽  
Ladislau Radermacher ◽  
Adriana Mariana Bors

The influence of fly ash adittion (90 % fraction [ 100 mm) on the cement mortar characteristics was studied. The XRD, XRF, SEM and FTIR determinations indicated that fly ash used has a hollow microstructure of microsphere and cenosphere whose total content in SiO2, Al2O3 and Fe2O3 is 88.63 % and that of CaO and MgO of 8.55 %. The mechanical, thermal and dielectric determinations made on mortar samples with content of fly ash in the 0-40 % range have highlighted fact that the mechanical strength of cement mortars is maximal at 20 %, the increase in fly ash content leads to a decrease in relative density and thermal conductivity as well as and to increased dielectric losses tgd.


2018 ◽  
Vol 777 ◽  
pp. 465-470
Author(s):  
Sutas Janbuala ◽  
Mana Eambua ◽  
Arpapan Satayavibul ◽  
Watcharakhon Nethan

The objective of this study was to recycle powdered marble dust to improve mechanical properties and thermal conductivity of lightweight clay bricks. Varying amounts of powdered marble dust (10, 20, 30, and 40 vol.%) were added to a lightweight clay brick at the firing temperatures of 900, 1000, and 1100 °C. When higher quantities of powdered marble dust were added, the values of porosity and water absorption increased while those of thermal conductivity and bulk density decreased. The decrease in apparent porosity and water absorption were also affected by the increase in firing temperature. The most desirable properties of the clay bricks were obtained for the powdered marble dust content of 40 vol.% and firing temperature 900 °C: bulk density of 1.20 g/cm3, compressive strength 9.2 MPa, thermal conductivity 0.32 W/m.K, and water absorption 22.5%.


2018 ◽  
Vol 174 ◽  
pp. 01014
Author(s):  
Alicja Wieczorek ◽  
Marcin Koniorczyk

The purpose of the study is to understand how the cyclic water freezing (0, 25, 50, 75, 100 and 150 freeze-thaw cycles) impacts microstructure and transport properties of cement-based materials. Tests were conducted on cement mortars with different water/cement ratios (w/c=0.45 and 0.40) and on two types of cement (CEM I and CEM III) without air-entraining admixtures. The changes of pore size distribution and open porosity were investigated by means of mercury intrusion porosimetry. Additionally, the relationship between intrinsic permeability and the water absorption coefficient of cement mortar samples was analysed. The water absorption coefficient and gas permeability were determined using capillary absorption test and the modified RILEMCembureau method. The evolution of transport coefficients with growing number of freeze-thaw cycles were determined on the same sample. It was also established that change of pore structure (a decrease of small pore volume <100nm and increase of larger pores >100nm) induces an increase of water transport parameters such as permeability and water absorption coefficient. The higher gas permeability corresponds to the higher internal damage. In particular, it is associated with the change of cement mortar microstructure, which indicates damage of narrow channels in the pore structure of cement mortars.


2017 ◽  
Vol 751 ◽  
pp. 538-543 ◽  
Author(s):  
Pongsak Jittabut

This research was aimed to a present the physical and thermal properties of geopolymer pastes made of fly ash (FA) and bagasse ash (BA) with rice husk ash (RHA) containing at the doses of 0%, 2%, 4%, 6%, 8% and 10% by weight. The sodium hydroxide concentration of 15 molars, sodium silicate per sodium hydroxide by weight ratio of 2.0, the alkaline liquid per binder at the ratio of 0.60 and curing at ambient temperature were used at the to mix all mixtures to gether for 7 and 28 days. The properties analysis of the geopolymer pastes such as compressive strength, bulk density, water absorption, thermal conductivity, thermal diffusivity and thermal capacity were tested. The results were indicated that geopolymer pastes that containing rice husk ash 2% by weight for 28 days of curing gave the maximum compressive strength of 84.42 kg/cm2, low water absorption of 1.16 %, low bulk density of 2,065.71 kg/cm3, lower thermal conductivity of 1.1173 W/m.K, lower thermal diffusion of 6.643 µm2/s and lower thermal capacity of 1.6819 MJ/m3K, respectively. The utilization of waste from agriculture industry via geopolymer pastes for green building materials can be achieved. For this research, physical properties and thermal insulation of geopolymer pastes were siqnificantly improved.


2014 ◽  
Vol 1000 ◽  
pp. 158-161 ◽  
Author(s):  
Radomír Sokolař ◽  
Lucie Vodová ◽  
Mikuláš Šveda

Influence of limestone sludge (generated during the washing process of limestone crushed aggregates) with high content of CaO in the form of calcite on the properties of brick body made from non-calcareous sludge (from the washing process of quartz sand) as a basic plastic brick clay was determined. Presence of calcite very distinctly influenced the firing process and properties of fired body. Limestone sludge decreases firing shrinkage, bulk density and coefficient of thermal conductivity of the brick body after the firing in the range of 850 – 950 °C. Higher modulus of rupture and water absorption is typical for fired bodies with limestone sludge addition. Most of these improvement are caused by the formation of anorthite only in the bodies based on the limestone sludge.


Sign in / Sign up

Export Citation Format

Share Document