scholarly journals Lightweight Insulation Boards Based on Lignocellulosic Particles Glued with Agents of Natural Origin

Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3219
Author(s):  
Radosław Mirski ◽  
Dorota Dziurka ◽  
Adam Derkowski

In this study, the possibility of using adhesives of natural origin for the manufacture of wood fiber-based lightweight panels was investigated. The boards, of a density ranging from 150 to 250 kg/m3, were glued together using commercial urea–formaldehyde resin (control board), solutions of rye flour and potato starch and two types of starch: oxidized and gelatinized. The density and density profile, compressive strength, modulus of elasticity, acoustic properties and thermal conductivity were determined in the produced boards. These studies show that when food components are used as binding agents in the manufacture of lightweight wood fiberboards, the properties obtained can be comparable with those of commercial boards manufactured using synthetic agents.

2012 ◽  
Vol 525-526 ◽  
pp. 437-440
Author(s):  
Chu Wang Su ◽  
Quan Ping Yuan ◽  
Wei Xing Gan ◽  
Jing Da Huang ◽  
Yuan Yi Huang

In this paper, the electromagnetic shielding function composite fiberboards were made by filling with stainless steel nets dipped with urea-formaldehyde resin adhesive (UF) and the influence of different mesh and layers of nets on its electromagnetic shielding performance, static bending strength (MOR), modulus of elasticity (MOE) and internal bonding strength (IB) were studied. The results showed that: when the mechanical strength was enough and the frequency was in range of 50MHz to 1GHz, of all the composite fiberboards filled with one-layer stainless steel net, the one filled with 60 mesh was best and the minimum shielding effectiveness (SE) was 36.22 dB; when filled with two-layers nets, the one filled with 80 mesh was best and the minimum SE was 42.54dB; when filled with three-layers nets, the one filled with 60 mesh was best and the minimum SE was 50.77dB.


BioResources ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. 5291-5304
Author(s):  
Se-Hwi Park ◽  
Min Lee ◽  
Pureun-Narae Seo ◽  
Eun-Chang Kang ◽  
Chun-Won Kang

The demand for noise control in residential environments is steadily increasing, but the currently available noise-reducing materials used in walls and floors are unsustainable and expensive. As an alternative, wood-fiber could be a good resource to manufacture eco-friendly acoustic materials. In this study, fiberboards were prepared by mixing wood-fibers (Pinus densiflora) with melamine-urea-formaldehyde resin adhesive, obtaining specimens with different final densities and resin contents. The acoustic, physical, and morphological properties of the fiberboards were investigated. The sound absorption was greatly influenced by the density of the fiberboard: lower densities showed higher sound absorption performances. Furthermore, the low-frequency absorption coefficient was higher for lower resin contents. The materials met all the criteria required by the Korean standards for fiberboards. As the density increased, the dimensional stability and the bending strength increased; in contrast, the physical properties were not affected by the resin content. Microscopy observations confirmed that specimens with different densities and resin contents had different porosities; the porosity was assumed to be the main property that governs the noise-reducing ability. Due to their eco-friendliness and inexpensiveness, these fiberboards offer themselves as efficient and effective alternative sound-absorbing materials.


BioResources ◽  
2019 ◽  
Vol 14 (3) ◽  
pp. 7122-7133 ◽  
Author(s):  
Mohammad Reza Tupa Esfandiyari ◽  
Mohammad Talaei Pour ◽  
Habibollah Khademieslam ◽  
Seyed Ahmad Mir Shokraei ◽  
Behzad Bazyar

The possibility of making glues of natural origin (pure lignin and lignin-gluoxal (instead of chemical resins for making plywood from poplar layer was investigated. For this purpose, lignin was reacted with glyoxal and the lignin-glyoxal glue was produced. To make the desired plywood, pure lignin (L.100%), lignin-glyoxal 15% (L.85%, G.15%), and lignin-glyoxal 30% (L.70%, G.30%) were used as the adhesive at three different levels. Ammonium chloride (1%) as the hardener and wheat flour (30%) as the filler based on the dry weight of the adhesive were also used. Plates made with urea formaldehyde resin at 160 g/m2 were considered as control samples. After the laboratory boards were produced, the physical and mechanical properties of samples, such as thickness swelling after 2 and 24 h of immersion in water, shear strength, modulus of rupture and modulus of elasticity, were measured. In addition, the groups and bonds in the pure lignin and lignin-gloxal adhesives were identified by Fourier transform infrared (FTIR) spectroscopy. In most tests and compared to the boards made of the adhesives and control boards, the lignin-glyoxal 30% (L.70%, G.30%) glue came closest to the performance of the control glue.


Author(s):  
Shanfeng Xu ◽  
Sanshan Xia ◽  
Yuzhu Chen ◽  
Hui Xiao ◽  
Maoyu Yi ◽  
...  

RSC Advances ◽  
2021 ◽  
Vol 11 (40) ◽  
pp. 25010-25017
Author(s):  
Li Lu ◽  
Yan Wang ◽  
Tianhua Li ◽  
Supeng Wang ◽  
Shoulu Yang ◽  
...  

Reactions between CaCO3 and CH2O2 during polycondensation of UF resin produce Ca2+. Ionic bond complexation binds Ca2+ with UF resin. The UF resin crystalline percentage decreases from 26.86% to 22.71%. IB strength of resin bonded fiberboard increases from 0.75 to 0.94 MPa.


2021 ◽  
Author(s):  
Weixin Zhang ◽  
Lin Wu ◽  
Dujin Qiao ◽  
Jie Tian ◽  
Yan Li ◽  
...  

Safety issues limit the large-scale application of lithium-ion batteries. In this work, a new type of N-H-microcapsule fire extinguishing agent is prepared by using melamine-urea-formaldehyde resin as shell material, perfluoro(2-methyl-3-pentanone)...


2018 ◽  
Vol 136 (17) ◽  
pp. 47389 ◽  
Author(s):  
Ana Maria Ferreira ◽  
João Pereira ◽  
Margarida Almeida ◽  
João Ferra ◽  
Nádia Paiva ◽  
...  

2013 ◽  
Vol 815 ◽  
pp. 367-370 ◽  
Author(s):  
Xiao Qiu Song ◽  
Yue Xia Li ◽  
Jing Wen Wang

Hexadecane microcapsule phase change materials were prepared by the in-situ polymerization method using hexadecane as core materials, urea-formaldehyde resin and urea-formaldehyde resin modified with melamine as shell materials respectively. Effect of melamine on the properties of microcapsules was studied by FTIR, biomicroscopy (UBM), TGA and HPLC. The influences of system concentration, agitation speed and mass ratio of wall to core were also investigated. The results indicated that hexadecane was successfully coated by the two types of shell materials. The addition of melamine into the urea-formaldehyde resin microcapsule reduced microcapsule particle size and microencapsulation efficiency. The influences of factors such as system concentration, agitation speed and mass ratio of wall to core to different wall materials microcapsules presented different variety trends of the microcapsule particle size.


Sign in / Sign up

Export Citation Format

Share Document