scholarly journals Size Effect of a Piezoelectric Patch on a Rectangular Plate with the Neural Network Model

Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3240
Author(s):  
Hequn Min ◽  
Jie Zhang ◽  
Mu Fan

Artificial neural networks have been widely used in many studies, such as the prediction of the piezoelectric effect of the plate of engineering structures in vibration and noise reduction. In this paper, an artificial neural network (ANN) model was employed to explore the piezoelectric patch size and thickness’s effect on the first order natural frequency and displacement amplitude of a plate. With the finite element method (FEM), a rectangular plate actuated by a piezoelectric patch was analyzed with various patch sizes. The FEM data was later used to build an ANN model. The dynamic response of the plate was predicted by the ANN model and validated with FEM in terms of 1st order natural frequency and displacement amplitude. Results from case studies showed that with the input of patch length, width and thickness, ANN model can accurately predict both natural frequency and displacement amplitude. When the input of ANN model was simplified to patch size and thickness or the volume of the patch, the accuracy became worse and worse. The influence of the patch size and thickness on the first order natural frequency was coupled and the maximal and minimal values were predicted based on the ANN model.

Author(s):  
Alok Garg ◽  
Vikas K. Sangal ◽  
Pramod K. Bajpai

Abstract Photocatalytic treatment of a binary dye mixture (Acid Blue 113 (AB113) and Acid Red 114 (AR114)) has been done in a slurry pond reactor using TiO2 as a photocatalyst with UV light irradiation (UV-C). Two different methods, namely multivariate calibration and first order derivative spectrophotometric were used to quantify each dye separately in binary dye solutions. The behavior of the photocatalytic degradation of a binary dye mixture was predicted using an artificial neural network (ANN) model. Five process parameters (initial concentration of AB113 dye, initial concentration of AR114 dye, TiO2 dose, initial pH of the dye mixture and time were used as inputs and decolorization efficiency of AB113 and AR114 were used as output of the ANN. The parametric optimization has been done by the multi-response optimization with desirability function methodology. Optimization by Central Composite Design (CCD) effectively handles the relations among optimizing process variables and its prediction concurred well with the experimental run and artificial neural network (ANN) model. The reaction kinetic rates of decolorization of both dyes (AB113 and AR114) were found to be first order. Total organic carbon (TOC) removal and possible reaction pathway show the total mineralization of both dyes in binary dye mixture.


2016 ◽  
Vol 25 (2) ◽  
pp. 096369351602500 ◽  
Author(s):  
Sudip Dey ◽  
Tanmoy Mukhopadhyay ◽  
Axel Spickenheuer ◽  
Uwe Gohs ◽  
S. Adhikari

This paper presents the stochastic natural frequency for laminated composite plates by using artificial neural network (ANN) model. The ANN model is employed as a surrogate and is trained by using Latin hypercube sampling. Subsequently the stochastic first two natural frequencies are quantified with ANN based uncertainty quantification algorithm. The convergence of the proposed algorithm for stochastic natural frequency analysis of composite plates is verified and validated with original finite element method (FEM) in conjunction with Monte Carlo simulation. Both individual and combined variation of stochastic input parameters are considered to address the influence on the output of interest. The sample size and computational cost are reduced by employing the present approach compared to traditional Monte Carlo simulation.


2019 ◽  
Vol 12 (3) ◽  
pp. 248-261
Author(s):  
Baomin Wang ◽  
Xiao Chang

Background: Angular contact ball bearing is an important component of many high-speed rotating mechanical systems. Oil-air lubrication makes it possible for angular contact ball bearing to operate at high speed. So the lubrication state of angular contact ball bearing directly affects the performance of the mechanical systems. However, as bearing rotation speed increases, the temperature rise is still the dominant limiting factor for improving the performance and service life of angular contact ball bearings. Therefore, it is very necessary to predict the temperature rise of angular contact ball bearings lubricated with oil-air. Objective: The purpose of this study is to provide an overview of temperature calculation of bearing from many studies and patents, and propose a new prediction method for temperature rise of angular contact ball bearing. Methods: Based on the artificial neural network and genetic algorithm, a new prediction methodology for bearings temperature rise was proposed which capitalizes on the notion that the temperature rise of oil-air lubricated angular contact ball bearing is generally coupling. The influence factors of temperature rise in high-speed angular contact ball bearings were analyzed through grey relational analysis, and the key influence factors are determined. Combined with Genetic Algorithm (GA), the Artificial Neural Network (ANN) model based on these key influence factors was built up, two groups of experimental data were used to train and validate the ANN model. Results: Compared with the ANN model, the ANN-GA model has shorter training time, higher accuracy and better stability, the output of ANN-GA model shows a good agreement with the experimental data, above 92% of bearing temperature rise under varying conditions can be predicted using the ANNGA model. Conclusion: A new method was proposed to predict the temperature rise of oil-air lubricated angular contact ball bearings based on the artificial neural network and genetic algorithm. The results show that the prediction model has good accuracy, stability and robustness.


Author(s):  
Shu-Farn Tey ◽  
Chung-Feng Liu ◽  
Tsair-Wei Chien ◽  
Chin-Wei Hsu ◽  
Kun-Chen Chan ◽  
...  

Unplanned patient readmission (UPRA) is frequent and costly in healthcare settings. No indicators during hospitalization have been suggested to clinicians as useful for identifying patients at high risk of UPRA. This study aimed to create a prediction model for the early detection of 14-day UPRA of patients with pneumonia. We downloaded the data of patients with pneumonia as the primary disease (e.g., ICD-10:J12*-J18*) at three hospitals in Taiwan from 2016 to 2018. A total of 21,892 cases (1208 (6%) for UPRA) were collected. Two models, namely, artificial neural network (ANN) and convolutional neural network (CNN), were compared using the training (n = 15,324; ≅70%) and test (n = 6568; ≅30%) sets to verify the model accuracy. An app was developed for the prediction and classification of UPRA. We observed that (i) the 17 feature variables extracted in this study yielded a high area under the receiver operating characteristic curve of 0.75 using the ANN model and that (ii) the ANN exhibited better AUC (0.73) than the CNN (0.50), and (iii) a ready and available app for predicting UHA was developed. The app could help clinicians predict UPRA of patients with pneumonia at an early stage and enable them to formulate preparedness plans near or after patient discharge from hospitalization.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhonghui Thong ◽  
Jolena Ying Ying Tan ◽  
Eileen Shuzhen Loo ◽  
Yu Wei Phua ◽  
Xavier Liang Shun Chan ◽  
...  

AbstractRegression models are often used to predict age of an individual based on methylation patterns. Artificial neural network (ANN) however was recently shown to be more accurate for age prediction. Additionally, the impact of ethnicity and sex on our previous regression model have not been studied. Furthermore, there is currently no age prediction study investigating the lower limit of input DNA at the bisulfite treatment stage prior to pyrosequencing. Herein, we evaluated both regression and ANN models, and the impact of ethnicity and sex on age prediction for 333 local blood samples using three loci on the pyrosequencing platform. Subsequently, we trained a one locus-based ANN model to reduce the amount of DNA used. We demonstrated that the ANN model has a higher accuracy of age prediction than the regression model. Additionally, we showed that ethnicity did not affect age prediction among local Chinese, Malays and Indians. Although the predicted age of males were marginally overestimated, sex did not impact the accuracy of age prediction. Lastly, we present a one locus, dual CpG model using 25 ng of input DNA that is sufficient for forensic age prediction. In conclusion, the two ANN models validated would be useful for age prediction to provide forensic intelligence leads.


Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1448
Author(s):  
Nam-Gyu Lim ◽  
Jae-Yeol Kim ◽  
Seongjun Lee

Battery applications, such as electric vehicles, electric propulsion ships, and energy storage systems, are developing rapidly, and battery management issues are gaining attention. In this application field, a battery system with a high capacity and high power in which numerous battery cells are connected in series and parallel is used. Therefore, research on a battery management system (BMS) to which various algorithms are applied for efficient use and safe operation of batteries is being conducted. In general, maintenance/replacement of multi-series/multiple parallel battery systems is only possible when there is no load current, or the entire system is shut down. However, if the circulating current generated by the voltage difference between the newly added battery and the existing battery pack is less than the allowable current of the system, the new battery can be connected while the system is running, which is called hot swapping. The circulating current generated during the hot-swap operation is determined by the battery’s state of charge (SOC), the parallel configuration of the battery system, temperature, aging, operating point, and differences in the load current. Therefore, since there is a limit to formulating a circulating current that changes in size according to these various conditions, this paper presents a circulating current estimation method, using an artificial neural network (ANN). The ANN model for estimating the hot-swap circulating current is designed for a 1S4P lithium battery pack system, consisting of one series and four parallel cells. The circulating current of the ANN model proposed in this paper is experimentally verified to be able to estimate the actual value within a 6% error range.


Mathematics ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 626
Author(s):  
Svajone Bekesiene ◽  
Rasa Smaliukiene ◽  
Ramute Vaicaitiene

The present study aims to elucidate the main variables that increase the level of stress at the beginning of military conscription service using an artificial neural network (ANN)-based prediction model. Random sample data were obtained from one battalion of the Lithuanian Armed Forces, and a survey was conducted to generate data for the training and testing of the ANN models. Using nonlinearity in stress research, numerous ANN structures were constructed and verified to limit the optimal number of neurons, hidden layers, and transfer functions. The highest accuracy was obtained by the multilayer perceptron neural network (MLPNN) with a 6-2-2 partition. A standardized rescaling method was used for covariates. For the activation function, the hyperbolic tangent was used with 20 units in one hidden layer as well as the back-propagation algorithm. The best ANN model was determined as the model that showed the smallest cross-entropy error, the correct classification rate, and the area under the ROC curve. These findings show, with high precision, that cohesion in a team and adaptation to military routines are two critical elements that have the greatest impact on the stress level of conscripts.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Abolghasem Daeichian ◽  
Rana Shahramfar ◽  
Elham Heidari

Abstract Lime is a significant material in many industrial processes, including steelmaking by blast furnace. Lime production through rotary kilns is a standard method in industries, yet it has depreciation, high energy consumption, and environmental pollution. A model of the lime production process can help to not only increase our knowledge and awareness but also can help reduce its disadvantages. This paper presents a black-box model by Artificial Neural Network (ANN) for the lime production process considering pre-heater, rotary kiln, and cooler parameters. To this end, actual data are collected from Zobahan Isfahan Steel Company, Iran, which consists of 746 data obtained in a duration of one year. The proposed model considers 23 input variables, predicting the amount of produced lime as an output variable. The ANN parameters such as number of hidden layers, number of neurons in each layer, activation functions, and training algorithm are optimized. Then, the sensitivity of the optimum model to the input variables is investigated. Top-three input variables are selected on the basis of one-group sensitivity analysis and their interactions are studied. Finally, an ANN model is developed considering the top-three most effective input variables. The mean square error of the proposed models with 23 and 3 inputs are equal to 0.000693 and 0.004061, respectively, which shows a high prediction capability of the two proposed models.


Sign in / Sign up

Export Citation Format

Share Document