scholarly journals The Influence of Titanium Dioxide on Silicate-Based Glasses: An Evaluation of the Mechanical and Radiation Shielding Properties

Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3414
Author(s):  
Badriah Albarzan ◽  
Mohamed Y. Hanfi ◽  
Aljawhara H. Almuqrin ◽  
M. I. Sayyed ◽  
Haneen M. Alsafi ◽  
...  

The mechanical and radiation shielding features were reported for a quaternary Na2O-CaO-SiO2-TiO2 glass system used in radiation protection. The fundamentals of the Makishima–Mazinize model were applied to evaluate the elastic moduli of the glass samples. The elastic moduli, dissociation energy, and packing density increased as TiO2 increased. The glasses’ dissociation energy increased from 62.82 to 65.33 kJ/cm3, while the packing factor slightly increased between 12.97 and 13.00 as the TiO2 content increased. The MCNP-5 code was used to evaluate the gamma-ray shielding properties. The best linear attenuation coefficient was achieved for glass samples with a TiO2 content of 9 mol%: the coefficient decreased from 5.20 to 0.14 cm−1 as the photon energy increased from 0.015 to 15 MeV.

2020 ◽  
Vol 11 (1) ◽  
pp. 326
Author(s):  
M.I. Sayyed ◽  
K.A. Mahmoud ◽  
O.L. Tashlykov ◽  
Mayeen Uddin Khandaker ◽  
M.R.I. Faruque

Elastic moduli were theoretically computed using the Makishima–Mackenzie model for SiO2–Na2O–CaO glasses doped with Sb2O3 contents. The calculated elastic moduli (Young’s, bulk, shear, and longitudinal modulus) were observed to increase with an increase in the Sb2O3 contents. The microhardness showed an increase, while Poisson’s ratio decreased with the rise of the Sb2O3 contents. In addition, gamma-ray and neutron shielding parameters were evaluated for the investigated glasses. The linear attenuation coefficient (LAC) was simulated using the Monte Carlo N-particle transport code (MCNP-5). Other parameters, such as the mass attenuation coefficient (MAC), transmission factor (TF), and half-value layer, were calculated based on the simulated LAC. The addition of Sb2O3 content was observed to enhance the investigated glasses’ shielding parameters, where the highest LAC was achieved for the SCNSb10 glass with 10 mol% Sb2O3 and decreased from 0.441 to 0.154 cm−1 at gamma energies between 0.248 and 1.406 MeV. Furthermore, the fast neutron effective removal cross-section (∑R) was computed theoretically. The calculated results showed that the highest ∑R was equal to 0.0341 cm2g−1 and was obtained for the SCNSb0 glass, which had no Sb2O3 content, while the lowest ∑R was equal to 0.0286 cm2 g−1 for the SCNSb10 glass sample. The present work was carried out to examine the advantages of the soda–lime glasses with different Sb2O3 contents in several photon shielding applications, especially for radiation safety in nuclear installations.


2020 ◽  
Vol 34 (07) ◽  
pp. 2050046
Author(s):  
Jinghui Fan ◽  
Juying Wu ◽  
Yan Ma

Ethylene Propylene Diene Monomer (EPDM) composites filled with 0–400 phr [Formula: see text] (PWO) were prepared by conventional process using a two-roll mill. Surface treatment of the fillers coated with KH570 was conducted to enhance the wettability and lubrication of fillers in the polymer matrix. According to SEM images and mechanical test, both micro- and submicro-fillers disperse homogeneously in the matrix, and adhesion of submicro-fillers to the matrix is stronger than that of micro-fillers. The submicro-PWO composites had better tensile strength and elongation at break than those composites containing micro-PWO powder, but a relatively higher hardness. The photon shielding test was performed to determine the radiation shielding properties of these composites, which showed that attenuation of gamma-rays for the submicro-PWO composites was substantially enhanced compared to micro-PWO reinforced composites.


2014 ◽  
Vol 679 ◽  
pp. 39-44 ◽  
Author(s):  
Ali Basheer Azeez ◽  
Kahtan S. Mohammed ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
Andrei Victor Sandhu ◽  
Azmi Rahmat ◽  
...  

Lead metal proved to be toxic. Its lethal effect became eminent. Many developed countries have banned lead usage in various applications. Seeking alternative material to replace lead is a crucial goal. As density concerns, tungsten-brass composite is a good candidate for lead replacement. In this study the radiation shielding effects of tungsten-brass composites were evaluated. To attain this goal, four tungsten-brass sets were prepared. The tungsten (W) wt. % in these specimens was ranged from 50 to 80, the balance is brass. The specimens were sintered at 10500C in alumina tube furnace under protective environment. To evaluate the radiation shielding performance of these specimens, two gamma ray sources, 137Cs and 60Co were utilized. The photon energy levels for these sources were of o.662MeV and 1.25MeV respectively. The measurements were performed using gamma spectrometer contains NaI (Tl) detector. The anti-radiation performance of the tungsten-brass was correlated to that of lead under similar conditions. Vickers micro hardness, relative sintered density, micro structural characterisation and linear attenuation coefficient (μ) were carried out. Samples with the highest Weight percentage of W has the highest hardness value while the one with the lowest Weight percentage of W. The linear attenuation coefficients of the specimens were significantly improved by increasing the W wt. % of the specimen. The linear attenuation coefficients of the tested specimens ranged from 0.85±0.010cm-1 to 1.12±0.049cm-1for 60Co and0.73±0.012 cm-1 to 0.97±0.027 cm-1 for 137Cs. This result indicates that W-brass composites are suitable material for lead replacement as a shielding barrier.Keywords: Attenuation coefficient, radiation shielding, lead, tungsten-brass composites, NaI (Tl).


Author(s):  
Amin Abd El-Moneim ◽  
Hassan Y. Alfifi

In this article, we have continued our recent work(30,42) on the prediction of elastic properties in alkali borovanadate glasses. Changes in the elastic moduli and Poisson’s ratio due to the substitution of V2O5 by Na2O in the ternary alkali Na2O–B2O3–V2O5 glasses have been analysed and predicted on the basis of the theories and approaches that existing in the field. Both the packing density and dissociation energy per unit volume of the glass were evaluated in terms of the basic structural units that constitute the glass network. In addition to this, the theoretical values of elastic moduli and Poisson’s ratio were calculated from the Makishima–Mackenzie’s model and compared with the corresponding experimental values. The results revealed that the concentrations of the basic structural units BO3, BO4, VO5 and VO4 play a dominant role in correcting the anomalous behaviour between experimental elastic moduli and calculated dissociation energy per unit volume. An excellent agreement between the theoretical and experimental elastic moduli was achieved for majority of the samples. The correlation between bulk modulus and the ratio between packing density and mean atomic volume has also been achieved on the basis of Abd El-Moneim and Alfifi’s approaches.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4697
Author(s):  
Ahmed M. El-Khatib ◽  
Mohamed Elsafi ◽  
Mohamed N. Almutiri ◽  
R. M. M. Mahmoud ◽  
Jamila S. Alzahrani ◽  
...  

The gamma-ray shielding ability of various Bentonite–Cement mixed materials from northeast Egypt have been examined by determining their theoretical and experimental mass attenuation coefficients, μm (cm2g−1), at photon energies of 59.6, 121.78, 344.28, 661.66, 964.13, 1173.23, 1332.5 and 1408.01 keV emitted from 241Am, 137Cs, 152Eu and 60Co point sources. The μm was theoretically calculated using the chemical compositions obtained by Energy Dispersive X-ray Analysis (EDX), while a NaI (Tl) scintillation detector was used to experimentally determine the μm (cm2g−1) of the mixed samples. The theoretical values are in acceptable agreement with the experimental calculations of the XCom software. The linear attenuation coefficient (μ), mean free path (MFP), half-value layer (HVL) and the exposure buildup factor (EBF) were also calculated by knowing the μm values of the examined samples. The gamma-radiation shielding ability of the selected Bentonite–Cement mixed samples have been studied against other puplished shielding materials. Knowledge of various factors such as thermo-chemical stability, availability and water holding capacity of the bentonite–cement mixed samples can be analyzed to determine the effectiveness of the materials to shield gamma rays.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5061
Author(s):  
Dalal Abdullah Aloraini ◽  
Aljawhara H. Almuqrin ◽  
M. I. Sayyed ◽  
Hanan Al-Ghamdi ◽  
Ashok Kumar ◽  
...  

The gamma-ray shielding features of Bi2O3-CaO-K2O-Na2O-P2O5 glass systems were experimentally reported. The mass attenuation coefficient (MAC) for the fabricated glasses was experimentally measured at seven energy values (between 0.0595 and 1.33 MeV). The compatibility between the practical and theoretical results shows the accuracy of the results obtained in the laboratory for determining the MAC of the prepared samples. The mass and linear attenuation coefficients (MACs) increase with the addition of Bi2O3 and A4 glass possesses the highest MAC and LAC. A downward trend in the linear attenuation coefficient (LAC) with increasing the energy from 0.0595 to 1.33 MeV is found. The highest LAC is found at 1.33 MeV (in the range of 0.092–0.143 cm−1). The effective atomic number (Zeff) follows the order B1 > A1 > A2 > A3 > A4. This order emphasizes that increasing the content of Bi2O3 has a positive effect on the photon shielding proficiencies owing to the higher density of Bi2O3 compared with Na2O. The half value layer (HVL) is also determined and the HVL for the tested glasses is computed between 0.106 and 0.958 cm at 0.0595 MeV. The glass with 10 mol% of Bi2O3 has lower HVL than the glasses with 0, 2.5, 5, and 7.5 mol% of Bi2O3. So, the A4 glass needs a smaller thickness than the other glasses to shield the same radiation. As a result of the reported shielding parameters, inserting B2O3 provides lower values of these three parameters, which in turn leads to the development of superior photons shields.


2018 ◽  
Vol 765 ◽  
pp. 329-334 ◽  
Author(s):  
Pranpriya Phutthanet ◽  
Pithiwat Tiantong ◽  
Phongthorn Julphunthong ◽  
Panuwat Joyklad ◽  
Li Jie Wang ◽  
...  

This study aims to evaluate gamma-ray shielding characteristics of concrete produced from blast furnace slag. The chemical and physical properties of the aggregates including the chemical composition and specific gravity were investigated to evaluate their radiation shielding properties. The samples were prepared with a cement content of 400 kg/m3, a water to cement ratio of 0.4, and fine aggregate of 43% and coarse aggregate ratio of 57%. Blast furnace slag was replaced with sand at 25%, 50%, 75% and 100% by volume to improve the shielding properties. The compressive strengths at 3, 7 and 28 days and the unit weight of the prepared samples were determined. The linear attenuation coefficient was measured and calculated at photon energies of 0.662 MeV, 1.17 MeV and 1.33 MeV. The WinXCom program was employed to calculate the attenuation coefficient from the chemical composition of samples and the results were compared to the measured results. The study results suggest that the use of blast furnace slag is effectively in improving the compressive strength and shielding properties of concrete. The increase of blast furnace slag caused an increase in the linear attenuation from 0.190 cm-1 to 0.210 cm-1 at 0.662 MeV.


2021 ◽  
Vol 11 (22) ◽  
pp. 10904
Author(s):  
M. I. Sayyed ◽  
M. Kh. Hamad ◽  
Mohammad Hasan Abu Mhareb ◽  
K. A. Naseer ◽  
K. A. Mahmoud ◽  
...  

The influence of modifier oxides (TiO2, ZnO, BaO, and PbO) on the mechanical and radiation shielding properties of boro-tellurate glasses is investigated. Samples with a composition of B2O3-SrO-TeO2-RO (RO represents the modifier oxides) were fabricated using the melt quench method, and their physical, mechanical, and radiation attenuation parameters were reported. For this aim, Monte Carlo simulation was employed to predict the radiation attenuation parameters, while the Makishima-Mackenzie model was adopted to determine the mechanical properties. The tightly packed structure with better cross-linkage density is possessed by the Ti-containing glass (SBT-Ti) system among the titled glass batch. The higher Poisson and micro-hardness values of the SBT-Ti glass indicate its structure’s reduced free volume and better compactness. For the glass with PbO, the linear and mass attenuation coefficients are highly increased compared to those glasses doped with TiO2, ZnO, and BaO. The thinner half-value layer was reported at 0.015 MeV, taking values 0.006, 0.005, 0.004, and 0.002 for samples with TiO2, ZnO, BaO, and PbO, respectively. SBT-Pb sample (with PbO) has a thinner HVL compared to other fabricated glass samples. The fabricated glasses’ thickness (Deq) equivalent to 1 cm of lead (Pb) was reported. The results demonstrated that Deq is high at low energy and equals 11.62, 8.81, 7.61, 4.56 cm for SBT-Ti, SBT-Zn, SBT-Ba, and SBT-Pb glass samples, respectively. According to the Deq results, the fabricated glasses have a shielding capacity between 30 and 43% compared to the pure Pb at gamma-ray energy of 1.5 MeV. At high energy (8 MeV), the transmission factor values for a thickness of 1 cm of the fabricated samples reach 88.68, 87.83, 85.95, and 83.11% for glasses SBT-Ti, SBT-Zn, SBT-Ba, and SBT-Pb, respectively.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4776 ◽  
Author(s):  
Hanan Al-Ghamdi ◽  
Mengge Dong ◽  
M. I. Sayyed ◽  
Chao Wang ◽  
Aljawhara H. Almuqrin ◽  
...  

The role La2O3 on the radiation shielding properties of La2O3-CaO-B2O3-SiO2 glass systems was investigated. The energies were selected between 0.284 and 1.275 MeV and Phy-X software was used for the calculations. BLa10 glass had the least linear attenuation coefficient (LAC) at all the tested energies, while BLa30 had the greatest, which indicated that increasing the content of La2O3 in the BLa-X glasses enhances the shielding performance of these glasses. The mass attenuation coefficient (MAC) of BLa15 decreases from 0.150 cm2/g to 0.054 cm2/g at energies of 0.284 MeV and 1.275 MeV, respectively, while the MAC of BLa25 decreases from 0.164 cm2/g to 0.053 cm2/g for the same energies, respectively. At all energies, the effective atomic number (Zeff) values follow the trend BLa10 < BLa15 < BLa20 < BLa25 < BLa30. The half value thickness (HVL) of the BLa-X glass shields were also investigated. The minimum HVL values are found at 0.284 MeV. The HVL results demonstrated that BLa30 is the most space-efficient shield. The tenth value layer (TVL) results demonstrated that the glasses are more effective attenuators at lower energies, while decreasing in ability at greater energies. These mean free path results proved that increasing the density of the glasses, by increasing the amount of La2O3 content, lowers MFP, and increases attenuation, which means that BLa30, the glass with the greatest density, absorbs the most amount of radiation.


2020 ◽  
Vol 12 ◽  
pp. 120005
Author(s):  
Ahmed ABDEL-LATIF ◽  
Maged Kassab ◽  
M. I. Sayyed ◽  
H. O. Tekin

The purpose of this study is to develop a low cost, locally produced concrete mixture with optimum marble content. The resulting mixture would have enhanced strength properties compared to the non-marble reference concrete, and improved radiation shielding properties. To accomplish these goals five concrete mixtures were prepared, containing 0, 5, 10, 15, and 20% marble waste powder as a cement replacement on the basis of weight.These samples were subjected to a compressive strength test. The shielding parameters such as mass attenuation coefficients μm, mean free path MFP, effective atomic number $Z_{eff}$ and exposure build-up factors EBF were measured, and results were compared with those obtained using the WinXcom program and MCNPX code in the photon energy range of 0.015 - 3 MeV. Moreover, the macroscopic fast neutron removal cross-section (neutron attenuation coefficient) was calculated and the results presented. The results show that the sample which contains 10% marble has the highest compressive strength and potentiallygood gamma ray and neutron radiation shielding properties.


Sign in / Sign up

Export Citation Format

Share Document