scholarly journals Preparation of Colored Microcapsule Phase Change Materials with Colored SiO2 Shell for Thermal Energy Storage and Their Application in Latex Paint Coating

Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4012
Author(s):  
Enpei Ma ◽  
Zhenghuang Wei ◽  
Cheng Lian ◽  
Yinping Zhou ◽  
Shichang Gan ◽  
...  

This article reports the design and manufacture of colored microcapsules with specific functions and their application in architectural interior wall coating. Utilizing reactive dyes grafted SiO2 shell to encapsulate paraffin through interfacial polymerization and chemical grafting methods, this experiment successfully synthesized paraffin@SiO2 colored microcapsules. The observations of surface morphology demonstrated that the colored microcapsules had a regular spherical morphology and a well-defined core-shell structure. The analysis of XRD and FT-IR confirmed the presence of amorphous SiO2 shell and the grafting reactive dyes, and the paraffin possessed high crystallinity. Compared with pristine paraffin, the thermal conductivity of paraffin@SiO2 colored microcapsules was significantly enhanced. The results of DSC revealed that the paraffin@SiO2 colored microcapsules performed high encapsulation efficiency and desirable latent heat storage capability. Besides, the examinations of UV-vis and TGA showed that the paraffin@SiO2 colored microcapsules exhibited good thermal reliability, thermal stability, and UV protection property. The analysis of infrared imaging indicated that the prepared latex paint exhibited remarkable temperature-regulated property. Compared with normal interior wall coatings, the temperature was reduced by about 2.5 °C. With such incomparable features, the paraffin@SiO2 colored microcapsules not only appeared well in their solar thermal energy storage and temperature-regulated property, but also make the colored latex paint coating have superb colored fixing capabilities.

Author(s):  
Shahim Nisar

Abstract: Thermal energy storage (TES) is a technology that stocks thermal energy by heating or cooling a storage medium so that the stored energy can be used at a later time for heating and cooling applications and power generation. TES systems are used particularly in buildings and in industrial processes. This paper is focused on TES technologies that provide a way of valorizing solar heat and reducing the energy demand of buildings. The principles of several energy storage methods and calculation of storage capacities are described. Sensible heat storage technologies, including water tank, underground and packed-bed storage methods, are briefly reviewed. Additionally, latent-heat storage systems associated with phase-change materials for use in solar heating/cooling of buildings, solar water heating, heat-pump systems, and concentrating solar power plants as well as thermo-chemical storage are discussed. Finally, cool thermal energy storage is also briefly reviewed and outstanding information on the performance and costs of TES systems are included.


2015 ◽  
Vol 6 ◽  
pp. 1487-1497 ◽  
Author(s):  
Nicole Pfleger ◽  
Thomas Bauer ◽  
Claudia Martin ◽  
Markus Eck ◽  
Antje Wörner

Thermal energy storage (TES) is capable to reduce the demand of conventional energy sources for two reasons: First, they prevent the mismatch between the energy supply and the power demand when generating electricity from renewable energy sources. Second, utilization of waste heat in industrial processes by thermal energy storage reduces the final energy consumption. This review focuses mainly on material aspects of alkali nitrate salts. They include thermal properties, thermal decomposition processes as well as a new method to develop optimized salt systems.


2016 ◽  
Vol 64 (2) ◽  
pp. 401-408
Author(s):  
J. Karwacki ◽  
K. Bogucka-Bykuć ◽  
W. Włosiński ◽  
S. Bykuć

Abstract This paper presents an experimental study performed with the general aim of defining procedures for calculation and optimization of shell-and-tube latent thermal energy storage unit with metals or metal alloys as PCMs. The experimental study is focused on receiving the exact information about heat transfer between heat transfer fluid (HTF) and phase change material (PCM) during energy accumulation process. Therefore, simple geometry of heat transfer area was selected. Two configurations of shell-and-tube thermal energy storage (TES) units were investigated. The paper also highlights the emerging trend (reflected in the literature) with respect to the investigation of metal PCM-based heat storage units in recent years and shortly presents unique properties and application features of this relatively new class of PCMs.


ROTASI ◽  
2016 ◽  
Vol 18 (3) ◽  
pp. 76 ◽  
Author(s):  
Muhammad Nadjib

Pemanas Air Tenaga Matahari (PATM) konvensional umumnya menggunakan air sebagai penyimpan energi termal. Pemakaian sensible heat storage (SHS) ini memiliki kekurangan, diantaranya adalah densitas energinya rendah. Di sisi lain, latent heat storage (LHS) mempunyai sifat khas yaitu densitas energinya tinggi karena melibatkan perubahan fasa dalam penyerapan atau pelepasan kalor. Material LHS sering disebut phase change material (PCM). Penggunaan PCM pada PATM menarik dilakukan untuk meningkatkan densitas energi sistem. Penelitian ini bertujuan untuk menyelidiki perilaku termal penggunaan paraffin wax di dalam tangki PATM jenis thermosyphon. Penelitian menggunakan kolektor matahari pelat datar dan tangki thermal energy storage (TES) yang dipasang secara horisontal di sisi atas kolektor. Di dalam tangki terdapat alat penukar kalor yang terdiri dari sekumpulan pipa kapsul dimana di dalamnya berisi paraffin wax. Air digunakan sebagai SHS dan heat transfer fluid (HTF). Termokopel dipasang di sisi HTF dan sisi PCM. Piranometer dan sensor temperatur udara luar diletakkan di dekat kolektor matahari. Pengambilan data dilakukan selama proses charging. Temperatur HTF, PCM dan intensitas radiasi matahari direkam setiap 30 detik. Data ini digunakan untuk mengetahui evolusi temperatur HTF dan PCM. Berdasarkan evolusi temperatur ini kemudian dianalisis perilaku termal PATM. Hasil dari penelitian ini adalah bahwa paraffin wax telah berfungsi sebagai penyimpan energi termal bersama air di dalam tangki PATM jenis thermosyphon. PCM memberi kontribusi yang cukup signifikan terhadap kapasitas penyimpanan energi sistem. Efisiensi kolektor lebih optimal karena PCM dapat mempertahankan stratifikasi termal sampai akhir charging. Adanya PCM mampu mengendalikan penurunan efisiensi pengumpulan energi saat intensitas radiasi matahari menurun. Alat penukar kalor yang digunakan cukup efektif yang ditandai dengan kecepatan pemanasan rata-rata antara HTF dan PCM yang tidak berbeda jauh.


2011 ◽  
Vol 71-78 ◽  
pp. 1191-1194
Author(s):  
Yan Lai Zhang ◽  
Chuan Mei Liu ◽  
Lei Luo ◽  
Hong Zhang ◽  
Li Jun Li ◽  
...  

The article mainly discusses the application situation on the solar energy wood drying in China, and summarizes its advantages and problems in the real application. Because solar energy is low in thermal density, intermittent, and it is affected by weather, these have very big limitation to use solar energy in the actual production process. Based on these, it is introduced that the advantages of thermal energy storage technology in wood drying process of solar energy, the main application modes and the actual application status. It summarizes the major thermal energy storage materials and their basic characteristics, discusses the application prospect and the importance on the latent heat storage technology in wood drying.


2017 ◽  
Vol 8 (1) ◽  
pp. 51-56 ◽  
Author(s):  
Z. Andrássy ◽  
Z. Szánthó

In this paper phase change materials are presented, as effective thermal energy storage due to their great latent heat storing possibility. The main substance used for thermal energy storage purposes is water. Storing the energy with water is not that effective as with phase change materials, because the temperature of water has to change, and it worsen the heat exchange intensity. On the other hand, with phase change materials the temperature of the material does not have to change due to the latent heat storage possibilities. A buffer tank with two pipe coils filled with phase change materials is investigated with the aim to reduce the storage volume. An own thermodynamic model, a CFD simulation and an experimental system are presented. The models could be validated and the process of phase change could be examined with a life-size thermal energy storage system in the laboratory of the department. The performance of heat absorption and release of the phase change material could be calculated in the function of inlet water temperature and mass flow.


Sign in / Sign up

Export Citation Format

Share Document