scholarly journals Silver Nanoparticle-Coated Polyhydroxyalkanoate Based Electrospun Fibers for Wound Dressing Applications

Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4907
Author(s):  
Ozlem Ipek Kalaoglu-Altan ◽  
Havva Baskan ◽  
Timo Meireman ◽  
Pooja Basnett ◽  
Bahareh Azimi ◽  
...  

Wound dressings are high performance and high value products which can improve the regeneration of damaged skin. In these products, bioresorption and biocompatibility play a key role. The aim of this study is to provide progress in this area via nanofabrication and antimicrobial natural materials. Polyhydroxyalkanoates (PHAs) are a bio-based family of polymers that possess high biocompatibility and skin regenerative properties. In this study, a blend of poly(3-hydroxybutyrate) (P(3HB)) and poly(3-hydroxyoctanoate-co-3-hydroxy decanoate) (P(3HO-co-3HD)) was electrospun into P(3HB))/P(3HO-co-3HD) nanofibers to obtain materials with a high surface area and good handling performance. The nanofibers were then modified with silver nanoparticles (AgNPs) via the dip-coating method. The silver-containing nanofiber meshes showed good cytocompatibility and interesting immunomodulatory properties in vitro, together with the capability of stimulating the human beta defensin 2 and cytokeratin expression in human keratinocytes (HaCaT cells), which makes them promising materials for wound dressing applications.

2013 ◽  
Vol 740 ◽  
pp. 565-569
Author(s):  
Xiao Xiao Meng ◽  
Mao Xiang Jing ◽  
Feng Lin He ◽  
Xiang Qian Shen

The catalysts La0.8K0.2FeO3(LKFO), La0.8K0.2Fe0.7Mn0.3O3(LKFMO) and La0.8K0.2Fe0.67Mn0.3Pt0.03O3(LKFMPO) were prepared by the citrate-gel process and the catalyst-coated honeycomb ceramic devices were prepared by the citrate-gel assisted dip-coating method. All the catalysts have a high performance on the simultaneous removal of NOxand soot at a temperature range of 200 to 400°C under the practical diesel exhaust emission. The obvious catalytic improvement is largely due to the effects of ions substitution, pore structure and microstructural characteristics of the catalysts. The catalytic performance order is LKFMPO > LKFMO > LKFO. Among them the LKFMPO catalyst shows the best catalytic properties, especially in the removal of NOx, with a maximum conversion rate of NOx(21.2%).


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1682 ◽  
Author(s):  
Bogdan Stefan Vasile ◽  
Alexandra Catalina Birca ◽  
Mihaela Carmen Musat ◽  
Alina Maria Holban

Infection represents one of the major risk factors in persistent and difficult to treat wounds. This study focuses on developing antimicrobial wound dressings coated with silver nanoparticles, sodium alginate and different essential oils, to avoid wound infection and biofilm formation. The design of the wound dressings was done by the dip coating method. The characteristics of the developed materials were analysed by physicochemical (FT-IR, XRD, SEM, TEM) and biological (antimicrobial tests) approaches. The results demonstrated uniform silver nanoparticle formation on the substrate, and the developed nanomodified dressings were proven to have increased antimicrobial and antibiofilm potential. The developed wound dressings based on silver nanoparticles, sodium alginate and essential oils have real potential in treating infections, and can be investigated as an efficient alternative to antibiotics and topical preparations for wound management.


2021 ◽  
Vol 225 ◽  
pp. 11-17
Author(s):  
Yahui Zhao ◽  
Yulong Yang ◽  
Qibing Chang ◽  
Zhiwen Hu ◽  
Xiaozhen Zhang

AIChE Journal ◽  
2012 ◽  
Vol 59 (3) ◽  
pp. 936-947 ◽  
Author(s):  
Xiaoxia Chen ◽  
Jinqu Wang ◽  
Dehong Yin ◽  
Jianhua Yang ◽  
Jinming Lu ◽  
...  

RSC Advances ◽  
2020 ◽  
Vol 10 (30) ◽  
pp. 17713-17723
Author(s):  
Tran Thi Ngoc Hoa ◽  
Nguyen Van Duy ◽  
Chu Manh Hung ◽  
Nguyen Van Hieu ◽  
Ho Huu Hau ◽  
...  

Ag2O nanoparticles decorated on the surface of on-chip growth SnO2 nanowires by a dip-coating method possessed excellent sensing performance for H2S gas.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Salim Levent Aktug ◽  
Salih Durdu ◽  
Selin Kalkan ◽  
Kultigin Cavusoglu ◽  
Metin Usta

AbstractCa-based porous and rough bioceramic surfaces were coated onto zirconium by micro-arc oxidation (MAO). Subsequently, the MAO-coated zirconium surfaces were covered with an antimicrobial chitosan layer via the dip coating method to develop an antimicrobial, bioactive, and biocompatible composite biopolymer and bioceramic layer for implant applications. Cubic ZrO2, metastable Ca0.15Zr0.85O1.85, and Ca3(PO4)2 were detected on the MAO surface by powder-XRD. The existence of chitosan on the MAO-coated Zr surfaces was verified by FTIR. The micropores and thermal cracks on the bioceramic MAO surface were sealed using a chitosan coating, where the MAO surface was porous and rough. All elements such as Zr, O, Ca, P, and C were homogenously distributed across both surfaces. Moreover, both surfaces indicated hydrophobic properties. However, the contact angle of the MAO surface was lower than that of the chitosan-based MAO surface. In vitro bioactivity on both surfaces was investigated via XRD, SEM, and EDX analyses post-immersion in simulated body fluid (SBF) for 14 days. In vitro bioactivity was significantly enhanced on the chitosan-based MAO surface with respect to the MAO surface. In vitro microbial adhesions on the chitosan-based MAO surfaces were lower than the MAO surfaces for Staphylococcus aureus and Escherichia coli.


2011 ◽  
Vol 299-300 ◽  
pp. 508-511
Author(s):  
Guo Chao Qi ◽  
Feng Jun Shan ◽  
Qiang Li ◽  
Jing Yuan Yu ◽  
Qu Kai Zhang

Magnesium apatite (MA, (Ca9Mg)(PO4)6(OH)2) and Hydroxyapatite (HA) coatings were synthesized on Ti6Al4V substrates by a sol-gel dip coating method. Glucose and bovine serum albumin (BSA) were added to the standard simulated body fluid (SBF) separately to form organic-containing simulated body fluids. MA and HA coatings were immersed in standard and organic modified SBF for time periods of 4, 7, 14, 21 and 28 days at 37±1°C. The surface dissolution and deposition behavior of the coatings after soaking were examined with Scanning Electron Microscopy (SEM) and X-ray Photoelectron Spectroscopy (XPS). The results show that glucose in SBF has no apparent effect on the deposition of new apatite from the solution. BSA in SBF shows retardation effect on the deposition of apatite by forming a protein dominant globular layer. This layer inhibits the further deposition of apatite from SBF solution.


2019 ◽  
Vol 7 (21) ◽  
pp. 6266-6272 ◽  
Author(s):  
Ting Shen ◽  
Jifeng Yuan ◽  
Xinhua Zhong ◽  
Jianjun Tian

Homogeneous large-area QD films were obtained by a dip-coating method. Photodetectors assembled with these films possess excellent detectivity.


2002 ◽  
Vol 735 ◽  
Author(s):  
Hyoung-Joon Jin ◽  
Jingsong Chen ◽  
Vassilis Karageorgiou ◽  
Gregory H. Altman ◽  
David L. Kaplan

ABSTRACTElectrospinning for the formation of nanoscale diameter fibers has been explored for high performance filters and biomaterial scaffolds for vascular grafts or wound dressings. Fibers with nanoscale diameters provide benefits due to high surface area. In this study we used electrospinning for protein-based biomaterials to fabricate scaffolds from aqueous regenerated silkworm silk, Bombyx mori,. Adhesion, spreading and proliferation of human bone marrow stem cells (hBMSCs) on electrospun silk was characterized. Scanning electron microscopy (SEM) and MTT analyses demonstrated that the electrospun silk matrices promoted hBMSC attachment and proliferation over 10 days in culture. The responses of the hBMSCs on the electrospun silk matrices, combined with the biocompatibile properties of the silk fibroin protein matrix, suggest potential for use of this biomaterial as scaffolds for tissue engineering.


Sign in / Sign up

Export Citation Format

Share Document