scholarly journals Wound Dressings Coated with Silver Nanoparticles and Essential Oils for The Management of Wound Infections

Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1682 ◽  
Author(s):  
Bogdan Stefan Vasile ◽  
Alexandra Catalina Birca ◽  
Mihaela Carmen Musat ◽  
Alina Maria Holban

Infection represents one of the major risk factors in persistent and difficult to treat wounds. This study focuses on developing antimicrobial wound dressings coated with silver nanoparticles, sodium alginate and different essential oils, to avoid wound infection and biofilm formation. The design of the wound dressings was done by the dip coating method. The characteristics of the developed materials were analysed by physicochemical (FT-IR, XRD, SEM, TEM) and biological (antimicrobial tests) approaches. The results demonstrated uniform silver nanoparticle formation on the substrate, and the developed nanomodified dressings were proven to have increased antimicrobial and antibiofilm potential. The developed wound dressings based on silver nanoparticles, sodium alginate and essential oils have real potential in treating infections, and can be investigated as an efficient alternative to antibiotics and topical preparations for wound management.

2013 ◽  
Vol 26 ◽  
pp. 153-158
Author(s):  
B. Vengadaesvaran ◽  
N. Arun ◽  
R. Chanthiriga ◽  
A.R. Bushroa ◽  
S. Ramis Rau ◽  
...  

In this work, silver nanoparticles were synthesized using the precipitation method at room temperature. The size of the silver nanoparticle was analyzed using transmission electron microscope and found to be in the range of 20 to 40 nm. The multi-functional transparent film on glass substrate was prepared using silver nanoparticle solutions and 3-Glycidyloxypropyltrimethoxy silane (GLYMO) by dip coating method. Ultraviolet visible spectroscopy measurement shows low absorbance thus confirming high transparency level. The critical load obtained from the micro-scratch test showed an increase from 3000 mN to 3319 mN.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4907
Author(s):  
Ozlem Ipek Kalaoglu-Altan ◽  
Havva Baskan ◽  
Timo Meireman ◽  
Pooja Basnett ◽  
Bahareh Azimi ◽  
...  

Wound dressings are high performance and high value products which can improve the regeneration of damaged skin. In these products, bioresorption and biocompatibility play a key role. The aim of this study is to provide progress in this area via nanofabrication and antimicrobial natural materials. Polyhydroxyalkanoates (PHAs) are a bio-based family of polymers that possess high biocompatibility and skin regenerative properties. In this study, a blend of poly(3-hydroxybutyrate) (P(3HB)) and poly(3-hydroxyoctanoate-co-3-hydroxy decanoate) (P(3HO-co-3HD)) was electrospun into P(3HB))/P(3HO-co-3HD) nanofibers to obtain materials with a high surface area and good handling performance. The nanofibers were then modified with silver nanoparticles (AgNPs) via the dip-coating method. The silver-containing nanofiber meshes showed good cytocompatibility and interesting immunomodulatory properties in vitro, together with the capability of stimulating the human beta defensin 2 and cytokeratin expression in human keratinocytes (HaCaT cells), which makes them promising materials for wound dressing applications.


2000 ◽  
Vol 628 ◽  
Author(s):  
Kazuki Nakanishi ◽  
Souichi Kumon ◽  
Kazuyuki Hirao ◽  
Hiroshi Jinnai

ABSTRACTMacroporous silicate thick films were prepared by a sol-gel dip-coating method accompanied by the phase separation using methyl-trimethoxysilane (MTMS), nitric acid and dimethylformamide (DMF) as starting components. The morphology of the film varied to a large extent depending on the time elapsed after the hydrolysis until the dipping of the coating solution. On a glass substrate, the films prepared by early dipping had inhomogeneous submicrometer-sized pores on the surface of the film. At increased reaction times, relatively narrow sized isolated macropores were observed and their size gradually decreased with the increase of reaction time. On a polyester substrate, in contrast, micrometer-sized isolated spherical gel domains were homogeneously deposited by earlier dippings. With an increase of reaction time, the volume fraction of the gel phase increased, then the morphology of the coating transformed into co-continuous gel domains and macropores, and finally inverted into the continuous gel domains with isolated macropores. The overall morphological variation with the reaction time was explained in terms of the phase separation and the structure freezing by the forced gelation, both of which were induced by the evaporation of methanol during the dipping operation.


2021 ◽  
Vol 1115 (1) ◽  
pp. 012028
Author(s):  
P T P Aryanti ◽  
G Trilaksono ◽  
A Hotmaida ◽  
M A Afifah ◽  
F P Pratiwi ◽  
...  

Author(s):  
Gözde Çelebi Efe ◽  
Elif Yenilmez ◽  
İbrahim Altinsoy ◽  
Serbülent Türk ◽  
Cuma Bindal

2012 ◽  
Vol 2012 ◽  
pp. 1-17 ◽  
Author(s):  
M. Selin Sunay ◽  
Onder Pekcan ◽  
Saziye Ugur

Steady-state fluorescence (SSF) technique in conjunction with UV-visible (UVV) technique and atomic force microscope (AFM) was used for studying film formation from TiO2covered nanosized polystyrene (PS) latex particles (320 nm). The effects of film thickness and TiO2content on the film formation and structure properties of PS/TiO2composites were studied. For this purpose, two different sets of PS films with thicknesses of 5 and 20 μm were prepared from pyrene-(P-) labeled PS particles and covered with various layers of TiO2using dip-coating method. These films were then annealed at elevated temperatures above glass transition temperature () of PS in the range of 100–280°C. Fluorescence emission intensity, from P and transmitted light intensity, were measured after each annealing step to monitor the stages of film formation. The results showed that film formation from PS latexes occurs on the top surface of PS/TiO2composites and thus developed independent of TiO2content for both film sets. But the surface morphology of the films was found to vary with both TiO2content and film thickness. After removal of PS, thin films provide a quite ordered porous structure while thick films showed nonporous structure.


2019 ◽  
Vol 32 (6) ◽  
pp. 611-619 ◽  
Author(s):  
Xiaoli Liu ◽  
Zhen Ge ◽  
Wenguo Zhang ◽  
Yunjun Luo

Due to their unique physicochemical properties, polysilazanes exhibit excellent performance when combined with some resin matrixes, which had drawn great research attention. In this article, polyurethane (PU) was firstly prepared by polytetrahydrofuran glycol, isophorone diisocyanate, and 1,4-butanediol as main materials. Then, the prepared PU was blended with polysilazane by mixing the two solutions together, which was cured to films via dip-coating method at room temperature. The structure, thermal stability, and surface properties of the composite coatings were investigated by Fourier-transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, and X-ray photoelectron spectroscopy. The results demonstrated that after modification with polysilazane, the heat resistance, hydrophobicity, and mechanical property of the PU coatings were improved. When the content of polysilazane was 6 wt%, the mechanical property of the composite films was optimized, with a maximum tensile strength of 25.7 MPa and elongation at break of 797%. Meanwhile, the water contact angle of the composite film was 107° and the water absorption reached a minimum of 2.1%, which showed improved hydrophobicity and water resistance.


Langmuir ◽  
2014 ◽  
Vol 30 (30) ◽  
pp. 9028-9035 ◽  
Author(s):  
J. Dugay ◽  
R. P. Tan ◽  
A. Loubat ◽  
L.-M. Lacroix ◽  
J. Carrey ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document