scholarly journals Water-Airborne-Particle Abrasion as a Pre-Treatment to Improve Bioadhesion and Bond Strength of Glass–Ceramic Restorations: From In Vitro Study to 15-Year Survival Rate

Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4966
Author(s):  
Luan Mavriqi ◽  
Francesco Valente ◽  
Bruna Sinjari ◽  
Oriana Trubiani ◽  
Sergio Caputi ◽  
...  

The purposes of this study were to evaluate the efficacy of water–airborne-particle abrasion (WAPA) as pre-etching procedure for tooth surfaces to increase bond strength, and to compare the survival rate of WAPA vs. non-WAPA glass–ceramic restorations with a 15-year follow-up. The occlusal surfaces of 20 human molars were sectioned and flattened. The prepared surfaces areas were subdivided into two parts: one received WAPA treatment (prophy jet handpiece with 50 µm aluminium oxide particles) followed by acid etching (37% phosphoric acid for 20 s/3-step etch-and-rinse); the other one was only acid-etched. In total, 108 specimens were obtained from the teeth, of which 80 were used to measure the micro-tensile bond strength (μTBS) in the WAPA (n = 40) and control (n = 40) groups, while the remaining specimens (n = 28) were investigated via SEM to evaluate the micromorphology and roughness (Ra) before and after the different treatment steps. The survival rate (SR) was performed on 465 glass–ceramic restorations (131 patients) comparing WAPA treatment (n = 183) versus non-WAPA treatment (n = 282). The bond strength was 63.9 ± 7.7 MPa for the WAPA group and 51.7 ± 10.8 MPa for the control group (p < 0.001). The Ra was 98 ± 24 µm for the enamel control group, 150 ± 35 µm for the enamel WAPA group, 102 ± 27 µm for the dentin control group and 160 ± 25 µm for the dentin WAPA group. The Ra increase from the WAPA procedure for enamel and dentin was statistically significant (p < 0.05). Under SEM, resin tags were present in both groups although in the WAPA they appeared to be extended in a 3D arrangement. The SR of the WAPA group (11.4 years) was 94%, while the SR of the non-WAPA group (12.3 years) was 87.6% (p < 0.05). The WAPA treatment using aluminium oxide particles followed by a 3-step etch-and-rinse adhesive system significantly improved bioadhesion with an increased bond strength of 23.6% and provided superior long-term clinical performance of glass–ceramic restorations.

2009 ◽  
Vol 34 (3) ◽  
pp. 328-336 ◽  
Author(s):  
C. D'Arcangelo ◽  
F. De Angelis ◽  
M. D'Amario ◽  
S. Zazzeroni ◽  
C. Ciampoli ◽  
...  

Clinical Relevance Compared to self-etch and self-adhesive luting systems, the two etch-and-rinse luting agents evaluated in the current study provided more reliable bonding when used to bond indirect resin-based composite restorations to sound dentin. On the contrary, the self-adhesive luting system showed the highest mean bond strength for the cementation of glass ceramic restorations.


2015 ◽  
Vol 16 (7) ◽  
pp. 547-553 ◽  
Author(s):  
Roberta Tarkany Basting ◽  
Cecília Pedroso Turssi ◽  
Flavia Lucisano Botelho do Amaral ◽  
Fabiana Mantovani Gomes França ◽  
Rafaela Crystyan Vaneli ◽  
...  

ABSTRACT Aim The aim of this study was to evaluate the effect of chlorhexidine and ethanol application on the push-out bond strength and bond durability of fiber posts cemented with an etch-and-rinse adhesive system/resin cement to intraradicular dentin. Materials and methods Fifty-four bovine roots were shaped for the cementation of a fiberglass post and received the application of 37% phosphoric acid. They were then randomly divided into three groups, according to the type of dentin treatment (n = 18) performed: no treatment (control group), 100% ethanol, or 2% chlorhexidine. Next, the adhesive system (Adper Scotch Bond Multipurpose Plus, 3M ESPE) was applied to the dentin, according to the manufacturer's instructions. Glass fiber posts were cemented with dual resin cement (Rely X ARC, 3M ESPE). After 48 hours, the specimens were serially sectioned for push-out test analysis, providing two slices from each root third (cervical, medium and apical), one of which was tested immediately and the other stored in distilled water for 180 days. The data were analyzed with three-way analysis of variance (ANOVA) for repeated measures and Tukey's test at a 5% significance level. Results Intraradicular treatment with chlorhexidine yielded the highest bond strength means, followed by ethanol treatment. The control group presented the lowest bond strength means. Water storage exerted no effect on bond strength values. Conclusion Both chlorhexidine and ethanol improved push-out bond strength to intraradicular dentin, with the former providing the best results, regardless of the storage time. Clinical significance The application of 2% chlorhexidine or 100% ethanol may be an important step that can be taken to enhance bond strength of fiber posts to intraradicular dentin, when dual resin cements are used. How to cite this article França FMG, Vaneli RC, de Melo Conti C, Basting RT, do Amaral FLB, Turssi CP. Effect of Chlorhexidine and Ethanol Application on Long-term Pushout Bond Strength of Fiber Posts to Dentin. J Contemp Dent Pract 2015;16(7):547-553.


2017 ◽  
Vol 42 (1) ◽  
pp. 62-72 ◽  
Author(s):  
J Gan ◽  
S Liu ◽  
L Zhou ◽  
Y Wang ◽  
J Guo ◽  
...  

SUMMARY Purpose: To investigate the effect of neodymium-doped yttrium aluminum garnet (Nd:YAG) laser irradiation pretreatment on the long-term bond strength of an etch-and-rinse adhesive to dentin. Methods: Fifty molars were sectioned parallel to the occlusal plane and randomly divided into two groups (n=25 per group): control group (no treatment) and laser group (dentin surfaces were treated with Nd:YAG laser at a setting of 100 mJ/10 Hz). Afterward, resin was bonded to the dentin surface using a two-step etch-and-rinse adhesive (Adper SingleBond 2), and then 150 beams of each group were produced. Each group was divided into three subgroups (n=50 each group): 24 hours of water storage, thermocycling, and NaOCl storage. The microtensile bond strength (MTBS), failure modes, nanoleakage expression, and Masson's trichrome staining were evaluated. An additional 20 molars were sectioned to obtain 2-mm-thick flat dentin slices. These slices were randomly divided into control and laser-treated groups as mentioned previously. Then slices of each group were examined by scanning electron microscopy, attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), X-ray diffraction (XRD), and the Knoop hardness test. Results: The results of ATR-FTIR and Masson's trichrome verified that laser irradiation partly removed collagen fibers from the dentin surface; however, no significant difference was found in the Knoop hardness (p&gt;0.05). The XRD result showed similar crystalline structure regardless of laser pretreatment. There is no significant difference in short-term MTBS between control and laser-treated groups (p&gt;0.05); however, long-term MTBS differed between the groups (p&gt;0.05). Furthermore, the laser-treated group showed less silver deposition than the control group after aging (p&lt;0.05). Conclusion: Pretreatment by Nd:YAG laser irradiation appeared to have a positive effect on the adhesive-dentin bonding in vitro test, and the bonding effectiveness could be preserved after aging.


2016 ◽  
Vol 27 (6) ◽  
pp. 688-692 ◽  
Author(s):  
César Rogério Pucci ◽  
Rodrigo Maximo de Araújo ◽  
Ana Julia Farias de Lacerda ◽  
Mirella Anjos de Souza ◽  
Maria Filomena Rocha Lima Huhtala ◽  
...  

Abstract The aim of this study was to evaluate the influence of contamination by hemostatic agents and rinsing with chlorhexidine on bond strength between dentin and resin composite. Ninety-six bovine teeth were sectioned to expose a flat dentin surface area. A standardized cavity with 2.0 mm in thickness, superficial diameter of 4.0 mm and bottom diameter of 3.0 mm was prepared with a diamond bur in each dentin specimen. The teeth were divided into four groups according to the hemostatic employed: G1: control; G2: use of ViscoStat, Ultradent; G3: Hemosthasegel, FGM; and G4: Hemostop, Dentsply. The groups were divided into two subgroups according to the cleaning protocol method (n=12): A: without any further cleaning; and B: cleaning with chlorhexidine at 0.2%. All cavities were filled using a dentin adhesive and a resin composite, following the manufacturer's instructions. After 24 h, the specimens were aged by thermal and mechanical cycling. The bond strength was determined by the push out bond test (MPa), Statistical analysis was performed using two-way ANOVA and Tukey test (p<0.05). Statistically significant differences were detected among all groups treated with hemostatic agents and the control group. The post-hoc test showed that cleaning the cavity with chlorhexidine significantly improves the bond strength between dentin and resin composite. Our results suggested that the use of chlorhexidine can reestablish the bond strength between dentin and resin composite when a hemostatic agent was applied.


2013 ◽  
Vol 24 (4) ◽  
pp. 349-352 ◽  
Author(s):  
Regina Claudia Ramos Colares ◽  
Jiovanne Rabelo Neri ◽  
Andre Mattos Brito de Souza ◽  
Karina Matthes de Freitas Pontes ◽  
Juliano Sartori Mendonca ◽  
...  

The aim of this study was to evaluate the influence of ceramic surface treatments and silane drying temperature on the microtensile bond strength (µTBS) of a resin composite to a lithium disilicate ceramic. Twenty blocks (7x7x5 mm) of lithium disilicate-based hotpressed ceramic were fabricated and randomly divided into 4 groups: G1: acid etching with 9.5% hydrofluoric acid for 20 s and drying silane with room-temperature air; G2: acid etching with 9.5% hydrofluoric acid for 20 s and drying silane with 45 ± 5 °C warm air; G3: airborne-particle abrasion with 50 µm aluminum oxide particles and drying silane with 45 ± 5 °C warm air; G4: airborne-particle abrasion with 50 µm aluminum oxide particles and drying silane with air at room-temperature. After treatments, an adhesive system (Single Bond 2) was applied, light-cured and direct restorations were built up with a resin composite (Filtek Z250). Each specimen was stored in distilled water at 37 °C for 24 h and cut into ceramic-composite beams with 1 mm2 of cross-sectional area for µTBS testing. Statistical analysis was performed with one-way ANOVA and Student-Newman-Keuls test (α=0.05). µTBS means (S.D.) in MPa were: G1: 32.14 (7.98), G2: 35.00 (7.77) and G3: 18.36 (6.17). All specimens of G4 failed during the cutting. G1 and G2 presented significantly higher µTBS than G3 (p<0.05). There was no statistically significant difference between G1 and G2 (p>0.05). As far as the bond strength is concerned, surface pretreatment of lithium-disilicate ceramic with hydrofluoric acid and silane application can be used as an alternative to repair ceramic restorations with composite resin, while surface pretreatment with sandblasting should be avoided.


2021 ◽  
Vol 15 (2) ◽  
pp. 82-86
Author(s):  
Mahmoud Bahari ◽  
Siavash Savadi Oskoee ◽  
Mohammad Esmaeel Ebrahimi Chaharom ◽  
Nasim Molayi

Background. Contamination of dentin surface is one of the common problems in restorative dentistry. The aim was to investigate the effects of different surface contaminators on the dentin shear bond strength (SBS) of universal adhesive system (UAS) applied in etch-and-rinse (ER) and self-etch (SE) strategies. Methods. One hundred forty-four maxillary anterior sound human teeth were divided into six groups based on the types of surface contaminators: no surface contaminator (control) and experimental groups contaminated with blood, saliva, aluminium chloride (ALC), ferric sulphate (FS), and caries disclosing agent (CDA). Then, each group was further subdivided into two, based on the application strategy of UAS (ER and SE). After applying the adhesive according to the manufacturer’s instructions, and bonding cylindrical composite samples, the SBS was measured. The data were analysed using two-way ANOVA, Tukey’s HSD test and t test (P<0.05). Results. The SBS in all contaminated groups, except for CDA, was significantly lower in both ER and SE strategies compared to control group (P<0.05). A comparison between the application strategies revealed that ER and SE were only significantly different in the FS contaminated group (P<0.05). Conclusion. All tested contaminators, except CDA, significantly decreased SBS of UAS in both ER and SE strategies.


Author(s):  
Siripan Simasetha ◽  
Awiruth Klaisiri ◽  
Tool Sriamporn ◽  
Kraisorn Sappayatosok ◽  
Niyom Thamrongananskul

Abstract Objective The study aimed to evaluate the shear bond strength (SBS) of lithium disilicate glass-ceramic (LDGC) and resin cement (RC) using different surface treatments. Materials and Methods LDGC blocks (Vintage LD Press) were prepared, etched with 4.5% hydrofluoric acid, and randomly divided into seven groups (n = 10), depending on the surface treatments. The groups were divided as follows: 1) no surface treatment (control), 2) Silane Primer (KS), 3) Signum Ceramic Bond I (SGI), 4) Signum Ceramic Bond I/Signum Ceramic Bond II (SGI/SGII), 5) experimental silane (EXP), 6) experimental silane/Signum Ceramic Bond II (EXP/SGII), and 7) Experimental/Adper Scotchbond Multi-purpose Adhesive (EXP/ADP). The specimens were cemented to resin composite blocks with resin cement and stored in water at 37 °C for 24 hours. The specimens underwent 5,000 thermal cycles and were subjected to the SBS test. Mode of failure was evaluated under the stereo microscope. Statistical Analysis Data were analyzed with Welch ANOVA and Games-Howell post hoc tests (α = 0.05). Results The highest mean SBS showed in group EXP/ADP (45.49 ± 3.37 MPa); however, this was not significantly different from group EXP/SGII (41.38 ± 2.17 MPa) (p ≥ 0.05). The lowest SBS was shown in the control group (18.36 ± 0.69 MPa). This was not significantly different from group KS (20.17 ± 1.10 MPa) (p ≥ 0.05). Conclusions The different surface treatments significantly affected the SBS value between LDGC and RC. The application of pure silane coupling agent with or without the application of an adhesive improved the SBS value and bond quality.


2018 ◽  
Vol 43 (4) ◽  
pp. 391-397 ◽  
Author(s):  
RC Ferreira-Filho ◽  
C Ely ◽  
RC Amaral ◽  
JA Rodrigues ◽  
J-F Roulet ◽  
...  

SUMMARY Objective: The purpose of this study was to investigate the immediate and three-month water storage behavior of adhesives when used for immediate dentin sealing (IDS). Methods and Materials: Four adhesive systems were used to perform IDS: a one-step self-etch (Xeno V), a two-step self-etch (Clearfil SE Bond), a two-step etch-and-rinse (XP Bond), and a three-step etch-and-rinse (Optibond FL). For the control group, IDS was not performed. The self-adhesive resin cement RelyX Unicem was used for the luting procedures. After seven days of water storage, specimens (n=6) were sectioned into beams (n=5) with an approximately 1-mm2 cross-sectional area. Half of the specimens were tested in tension after seven days of water storage at 37°C, while the other half was stored for three months prior to testing in tension using a universal testing machine (1 mm/min). The failure pattern was determined using a stereomicroscope and scanning electron microscopy. Microtensile bond strength (μTBS) data were statistically analyzed by two-way analysis of variance and Tukey post hoc test (α=0.05). Results: After seven days, the control group presented the lowest μTBS but did not differ from XP Bond and Clearfil SE Bond. After three months, there was no μTBS difference between the IDS groups and the control. Conclusions: After seven days of water storage, the groups with IDS presented higher μTBS values than the control group, although XP Bond and Clearfil SE Bond did not present significant differences. However, after three months of storage in water, IDS groups did not differ significantly from control group, which did not receive IDS.


2012 ◽  
Vol 06 (01) ◽  
pp. 056-062 ◽  
Author(s):  
Adriano Fonseca Lima ◽  
Vinícius Brito da Silva ◽  
Giulliana Panfiglio Soares ◽  
Giselle Maria Marchi ◽  
Flávio Henrique Baggio Aguiar ◽  
...  

ABSTRACTObjectives: The aim of this study was to evaluate the (1) bond strength of a etch-and-rinse and self-etching adhesive systems to cavosurface enamel, (2) influence of the previous acid etching with phosphoric acid 35% to the self-etching adhesive application on bond strength values, and (3) analysis of the cavosurface enamel morphology submitted to different types of conditioning, with the use of a scanning electronic microscope (SEM).Methods: Twenty four human third molars were sectioned on mesio-distal direction, resulting in two slices. The specimens were ground flat with 600-grit aluminum oxide papers, and were randomly divided into three groups: Group 1 (etch-and-rinse adhesive system (control group)), Group 2 (selfetching adhesive), and Group 3 (self-etching adhesive with previous 35% phosphoric acid-etching for 15 s). Four cylinders (0.75 mm of diameter, 1 mm height) were confectioned prior to the microshear test. Four samples for each group were prepared according the cavosurface enamel treatment and were analyzed in an SEM.Results: Group 3 had the highest values on bond strength to cavosurface enamel compared to the other two groups, which presented statistically similar values. The performance of acid etching before the application of the self-etching adhesive results in an etching pattern that is different than the other groups, favoring the adhesion to the cavosurface enamel.Conclusions: Acid etching increases the bond strength values of the self-etching adhesive to cavosurface enamel, promoting a conditioning pattern that favors the adhesion to this substrate. (Eur J Dent 2012;6:56-62)


2017 ◽  
Vol 28 (2) ◽  
pp. 206-209 ◽  
Author(s):  
José Eliú Pereira Jurubeba ◽  
Ana Rosa Costa ◽  
Lourenço Correr-Sobrinho ◽  
Carlos Alberto Malanconi Tubel ◽  
Américo Bortolazzo Correr ◽  
...  

Abstract The aim of this study was to evaluate the effect of different number of thermal cycles on the shear bond strength (SBS) of metallic orthodontic brackets bonded to feldspathic ceramic by a composite resin. Twenty-five ceramic cylinders were etched with 10% hydrofluoric acid for 60 s and received two layers of silane. Brackets were bonded to the cylinders using Transbond XT and assigned to 5 groups (n=5): Group 1 - Control group (without thermal cycling); Group 2 - 500 thermal cycles; Group 3 - 5,000 thermal cycles; Group 4 - 7,000 thermal cycles and Group 5 - 10,000 thermal cycles. Light-activation was carried out by Radii Plus LED. SBS testing was carried out after 24 h of storage in deionized water and thermal cycling (5/55 oC and 30 s dwell time). Five brackets were bonded to each cylinder, totalizing 25 brackets for each group. Data were submitted to one-way ANOVA and Tukey’s test (α=0.05). The Adhesive Remnant Index (ARI) was evaluated at 8× magnification. The SBS (MPa) of control group (9.3±0.8), 500 (9.0±0.7) and 5,000 (8.4±0.9) thermal cycles were significantly higher than those after 7,000 (6.8±0.6) and 10,000 (4.9±1.0) thermal cycles (p<0.05). The ARI showed a predominance of Scores 0 (adhesive failure) prevailed in all groups, as shown by the ARI, with increased scores 1 and 2 (mixed failures) for control group and 500 thermal cycles. In conclusion, thermal fatigue may compromise the bonding integration between metallic brackets and ceramic restorations. For in vitro testing, use of at least 7,000 cycles is advised to result in significant fatigue on the bonding interface.


Sign in / Sign up

Export Citation Format

Share Document