scholarly journals Appearance of Hysteresis Phenomena on Hydrodynamic Lubrication in a Seal-Type Thrust Bearing with Dimples

Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5222
Author(s):  
Reo Miwa ◽  
Norifumi Miyanaga ◽  
Jun Tomioka

This paper described unique hysteresis phenomena that appear in the hydrodynamic lubrication properties of dimpled thrust bearings. A seal-type thrust bearing specimen was textured with dimples. The load-carrying capacity and frictional torque were measured with a constant film thickness and compared to those of a dimple-free specimen. For examining the size of cavitation bubbles that occurred in various conditions, the lubricating area was observed during experiments. The used dimpled specimen produced the load-carrying capacity, and it exhibited an interesting hysteresis phenomenon, the difference in the values in the increasing and decreasing processes of rotational speed. The visualization test results revealed that the size of cavitation bubbles occurring within the dimples strongly affected this phenomenon. In addition, the dimpled specimen was able to reduce the frictional torque compared to the dimple-free specimen. However, the frictional torque did not show the hysteresis loop similar to that shown in the load-carrying capacity.

2017 ◽  
Vol 22 (3) ◽  
pp. 717-737 ◽  
Author(s):  
A. Walicka ◽  
E. Walicki ◽  
P. Jurczak ◽  
J. Falicki

AbstractIn the paper, the influence of both the bearing surfaces roughness as well as porosity of one bearing surface on the pressure distribution and load-carrying capacity of a curvilinear, externally pressurized, thrust bearing is discussed. The equations of motion of a pseudo-plastic Rabinowitsch fluid are used to derive the Reynolds equation. After general considerations on the flow in a bearing clearance and in a porous layer using the Morgan-Cameron approximation and Christensen theory of hydrodynamic lubrication with rough bearing surfaces the modified Reynolds equation is obtained. The analytical solution is presented; as a result one obtains the formulae expressing the pressure distribution and load-carrying capacity. Thrust radial and conical bearings, externally pressurized, are considered as numerical examples.


Author(s):  
Yanxiang Han ◽  
Qingen Meng ◽  
Gregory de Boer

A two-scale homogenization method for modelling the hydrodynamic lubrication of mechanical seals with isotropic roughness was developed and presented the influence of surface topography coupled into the lubricating domain. A linearization approach was derived to link the effects of surface topography across disparate scales. Solutions were calculated in a polar coordinate system derived based on the Elrod cavitation algorithm and were determined using homogenization of periodic simulations describing the lubrication of a series of surface topographical features. Solutions obtained for the hydrodynamic lubrication regime showed that the two-scale homogenization approach agreed well with lubrication theory in the case without topography. Varying topography amplitude demonstrated that the presence of surface topography improved tribological performance for a mechanical seal in terms of increasing load-carrying capacity and reducing friction coefficient in the radial direction. A Stribeck curve analysis was conducted, which indicated that including surface topography led to an increase in load-carrying capacity and a reduction in friction. A study of macro-scale surface waviness showed that the micro-scale variations observed were smaller in magnitude but cannot be obtained without the two-scale method and cause significant changes in the tribological performance.


1959 ◽  
Vol 26 (3) ◽  
pp. 337-340
Author(s):  
C. F. Kettleborough

Abstract The problem of the stepped-thrust bearing is considered but, whereas normally volumetric continuity is assumed, the equations are solved assuming mass continuity; i.e., the variation of density is also considered as well as the effect of the stepped discontinuity on the load-carrying capacity and the coefficient of friction. Computed theoretical curves illustrate the importance of the density on the operation of this bearing and, in part, explain results already published.


2019 ◽  
Vol 141 (4) ◽  
Author(s):  
Venkata K. Jasti ◽  
Martin C. Marinack ◽  
Deepak Patil ◽  
C. Fred Higgs

This work demonstrates that granular flows (i.e., macroscale, noncohesive spheres) entrained into an eccentrically converging gap can indeed actually exhibit lubrication behavior as prior models postulated. The physics of hydrodynamic lubrication is quite well understood and liquid lubricants perform well for conventional applications. Unfortunately, in certain cases such as high-speed and high-temperature environments, liquid lubricants break down making it impossible to establish a stable liquid film. Therefore, it has been previously proposed that granular media in sliding convergent interfaces can generate load carrying capacity, and thus, granular flow lubrication. It is a possible alternative lubrication mechanism that researchers have been exploring for extreme environments, or wheel-regolith traction, or for elucidating the spreadability of additive manufacturing materials. While the load carrying capacity of granular flows has been previously demonstrated, this work attempts to more directly uncover the hydrodynamic-like granular flow behavior in an experimental journal bearing configuration. An enlarged granular lubricated journal bearing (GLJB) setup has been developed and demonstrated. The setup was made transparent in order to visualize and video capture the granular collision activity at high resolution. In addition, a computational image processing program has been developed to process the resulting images and to noninvasively track the “lift” generated by granular flow during the journal bearing operation. The results of the lift caused by granular flow as a function of journal rotation rate are presented as well.


Author(s):  
Peter A. J. Achten ◽  
Marc P. A. Schellekens

Most hydrostatic pumps and motors apply mechanical face seals, often also acting as a thrust bearing. The load carrying capacity of these bearings is very much dependent on the pressure profile generated in the sealing gap. Previous research, outside pumps and motors, has already shown that the gap pressure profile is largely influenced by small radial deformations of the seal lands. This paper discusses the elastic deformation of pump components and the effects of these deformations on the load carrying capacity of a barrel in an axial piston machine.


2018 ◽  
Vol 162 ◽  
pp. 04005
Author(s):  
Kaiss Sarsam ◽  
Raid Khalel ◽  
Mohammed Hadi

An experimental study was carried out to investigate the behavior of normal strength reinforce concret (RC) circular short column strengthned with “carbon fiber reinforced polymer (CFRP) sheets”. Three series comprising totally of (15) specimens loaded until failure under concentric compresion load. Strengthening was varied by changing the number of CFRP strips, spacing and wrapping methods. The findings of this research can be summarized as follows: for the columns without CFRP, the influence of the tie spacing was significant: compared with 130 mm tie spacing, dropping the spacing to 100 mm and 70 mm increased the load carrying capacity by 18% and 26%, respectively. The columns with less internal confinement (lesser amount of ties) were strengthened more significantly by the CFRP than the ones with greater amount of internal ties. As an example of the varying effectiveness of the fully wrapped CFRP, the column with ties at 130 mm was strengthened by 90% with the CFRP. In contrast, the ones with 70 mm spaced ties only increased in strength with CFRP by 66%. Compared with the control specimen (no CFRP), the same amount of CFRP when used as hoop strips led to more strengthening than using CFRP as a spiral strip- the former led to nearly 9% more strengthening than the latter in the case of 130 mm spaced internal steel ties. In the case of 100 mm internal steel ties, the difference (between the hoops & spiral CFRP strengthening) is close to 4%. In contrast, there is no difference between the two methods of strengthening in the heavily tied columns (70 mm tied spacing).


1978 ◽  
Vol 100 (2) ◽  
pp. 271-278
Author(s):  
V. K. Kapur ◽  
Kamlesh Verma

An analytical study is presented on the influence of finite wall conductance and inertia effects in magnetohydrodynamic lubrication flow between two parallel disks, one of which is rotating with constant angular velocity, in the presence of the axial magnetic field. Numerical results showing the behavior of wall conductance and inertia effects on pressure distribution, load carrying capacity, critical speed, and frictional torque of the bearing are obtained. Results obtained will provide necessary conditions for wall materials to improve the bearing performance.


1983 ◽  
Vol 105 (1) ◽  
pp. 48-63 ◽  
Author(s):  
C. Bagci ◽  
A. P. Singh

The effect of the film shape on the load carrying capacity of a hydrodynamically lubricated bearing has not been considered an important factor in the past. Flat-faced tapered bearing and the Raileigh’s step bearing of constant film thickness have been the primary forms of film shapes for slider bearing studies and design data developments. This article, by the computer aided numerical solution of the Reynolds equation for two dimensional incompressible lubricant flow, investigates hydrodynamically lubricated slider bearings having different film shapes and studies the effect of the film shape on the performance characteristics of finite bearings; and it shows that optimized bearing with film shapes having descending slope toward the trailing edge of the bearing has considerably higher load carrying capacity than the optimized flat-faced tapered bearing of the same properties. For example the truncated cycloidal film shape yields 26.3 percent higher load carrying capacity for Lz/Lx = 1 size ratio, and 44 percent higher for Lz/Lx = 1/2. The article then presents charts for the optimum designs of finite slider bearings having tapered, exponential, catenoidal, polynomial, and truncated-cycloidal film shapes, and illustrates their use in numerical bearing design examples. These charts also furnish information on flow rate, side leakage, temperature rise, coefficient of friction, and friction power loss in optimum bearings. Appended to the article are analytical solutions for infinitely wide bearings with optimum bearing characteristics. The computer aided numerical solution of the Reynolds equation in most general form is presented by which finite or infinitely wide hydrodynamically or hydrostatically lubricated bearings, externally pressurized or not, can be studied. A digital computer program is made available.


1986 ◽  
Vol 108 (2) ◽  
pp. 159-166 ◽  
Author(s):  
Y. Mitsuya

Stokes roughness effects on hydrodynamic lubrication are studied in the slip flow regime. Slip flow boundary conditions for Navier-Stokes equations are derived, assuming that the fluid on a surface slips due to the molecular mean free path along the surface, even if the surface is rough. The perturbation method for Navier-Stokes equations, which was derived in Part I of this report, is then applied. Slip flow effects on load carrying capacity and frictional force are numerically clarified for both Stokes and Reynolds roughnesses. In the slip flow regime, second-order quantities induced by Stokes effects, such as flow rate, load carrying capacity, and frictional force are in proportion to the wavenumber squared. This phenomenon relative to the quantities being proportional is also the same as that in the continuum flow regime. As a result of velocity slippage, the load carrying capacity in Stokes roughness is found to decrease more than in Reynolds roughness for incompressible films, while the relationship is reversed for compressible films having a high compressibility number. The simulation of random roughness, which is generated by numerical means, clarifies one important result: the average slip flow effects associated with random Stokes roughness become similar to the slip flow effects in deterministic sinusoidal Stokes roughness, whose wavelength and height are statistically equivalent to those of random roughness. Although attention should be given to the fact that Stokes effects on random roughness demonstrate considerable scattering with the continuum flow, such scattering diminishes with the slip flow.


Sign in / Sign up

Export Citation Format

Share Document