scholarly journals A Brief Photocatalytic Study of ZnO Containing Cerium towards Ibuprofen Degradation

Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5891
Author(s):  
Alexandro S. Sá ◽  
Rodrigo P. Feitosa ◽  
Luzia Honório ◽  
Ramón Peña-Garcia ◽  
Luciano C. Almeida ◽  
...  

Ibuprofen (IBU) is one of the most-sold anti-inflammatory drugs in the world, and its residues can reach aquatic systems, causing serious health and environmental problems. Strategies are used to improve the photocatalytic activity of zinc oxide (ZnO), and thosethat involvethe inclusion of metalhave received special attention. The aim of this work was to investigate the influence of the parameters and toxicity of a photoproduct using zinc oxide that contains cerium (ZnO-Ce) for the photodegradation of ibuprofen. The parameters include the influence of the photocatalyst concentration (0.5, 0.5, and 1.5 g L−1) as well as the effects of pH (3, 7, and 10), the effect of H2O2, and radical scavengers. The photocatalyst was characterized by Scanning Electron Microscopy-Energy Dispersive Spectroscopy, Transmission electron microscopy, Raman, X-Ray Diffraction, surface area, and diffuse reflectance. The photocatalytic activity of ibuprofen was evaluated in an aqueous solution under UV light for 120 min. The structural characterization by XRD and SEM elucidated the fact that the nanoparticle ZnO contained cerium. The band gap value was 3.31 eV. The best experimental conditions for the photodegradation of IBU were 60% obtained in an acidic condition using 0.50 g L−1 of ZnO-Ce in a solution of 20 ppm of IBU. The presence of hydrogen peroxide favored the photocatalysis process. ZnO-Ce exhibited good IBU degradation activity even after three photocatalytic cycles under UV light. The hole plays akey role in the degradation process of ibuprofen. The toxicity of photolyzed products was monitored against Artemia salina (bioindicator) and did not generate toxic metabolites. Therefore, this work provides a strategic design to improve ZnO-Ce photocatalysts for environmental remediation.

Minerals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 132
Author(s):  
Maicon O. Miranda ◽  
Bartolomeu Cruz Viana ◽  
Luzia Maria Honório ◽  
Pollyana Trigueiro ◽  
Maria Gardênnia Fonseca ◽  
...  

Titanium and zirconium oxides (TiO2 and ZrO2, respectively) were obtained from alkoxides hydrolyses, and then deposited into palygorskite clay mineral (Pal) to obtain new materials for photocatalytic applications. The obtained materials were characterized by structural, morphological, and textural techniques. X-ray diffraction (XRD) results confirmed the characteristic peaks of oxides and clay transmission electron microscopy (TEM) and scanning electron microscopy (SEM) images of the modified palygorskite with both oxides showed that the clay was successfully modified by the proposed method. The increase in the specific surface area of the clay occurred when TiO2 and ZrO2 were deposited on the surface. The photocatalytic activity of these materials was investigated using the Remazol Blue anion dye under UV light. The evaluated systems presented high photocatalytic activity, reaching approximately 98% of dye discoloration under light. Thus, TiO2–Pal and ZrO2–TiO2–Pal are promising clay mineral-based photocatalysts.


2013 ◽  
Vol 634-638 ◽  
pp. 2475-2480
Author(s):  
Ai Min Tang ◽  
Ting Ting Hu ◽  
Xia Su

Microcrystalline cellulose (MCC)/cadmium sulfide (CdS) nanocomposites were prepared by using ultrasound wave irradiation. The as-prepared samples were characterized using scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS), atomic absorption spectrometry (AAS), transmission electron microscopy (TEM). The photocatalytic behavior of MCC/CdS nanocomposites was evaluated using the degradation of a methyl orange (MeO) aqueous solution under ultraviolet (UV) light irradiation. Results showed that CdS nanoparticles were evenly distributed on the surface of MCC with little aggregation; the amount of Cd attached to the MCC was 23.75 % (w/w, Cd/composites). The MeO degradation rate was much higher when the MCC/CdS nanocomposites were irradiated with UV light than when CdS powder alone was irradiated. In dark conditions, the MCC/CdS nanocomposites showed almost no photocatalytic activity. In addition, the amount of MCC/CdS nanocomposites added to MeO solution and the initial pH of the MeO solution were also important factors influencing the photocatalytic activity. The results show that MCC/CdS nanocomposites are promising materials with excellent performance in photocatalytic applications.


2011 ◽  
Vol 335-336 ◽  
pp. 460-463 ◽  
Author(s):  
Hong Mei Wang ◽  
Da Peng Zhou ◽  
Yuan Lian ◽  
Ming Pang ◽  
Dan Liu

Hexagonal flower-like CdS nanostructures were successfully synthesized through a facile hydrothermal method with thiourea as sulfur source. By combining the results of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), the structural and morphological characterizations of the products were performed. The photocatalytic activity of CdS nanostructures had been tested by degradation of Rhodamine B (RB) under UV light compared to commercial CdS powders, which indicated that the as-syntherized CdS nanostructures exhibited enhanced photocatalytic activity for degradation of RB. The possible growth mechanism of CdS nanostructures was proposed in the end.


Catalysts ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1457
Author(s):  
Fahad A. Alharthi ◽  
Abdulaziz Ali Alghamdi ◽  
Hamdah S. Alanazi ◽  
Amjad Abdullah Alsyahi ◽  
Naushad Ahmad

In this study, we report the fabrication of graphitic carbon nitride doped zinc oxide nanocomposites, g-C3N4/ZnO, (Zn-Us) by using different amount of urea. They were further characterized by X-ray Diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), Raman, UV-vis, Scanning electron microscopy (SEM), and Transmission electron microscopy (TEM) techniques. The prepared nanocomposites were used as photocatalysts for the mineralization of the light sensitive dyes Methylene Blue (MB) and Rose Bengal (RB) under UV light irradiation, and corresponding photo-mechanism was proposed. Benefiting from these photocatalytic characteristics, urea derived g-C3N4/ZnO photocatalysts have been found to have excellent photodegradation activity against the MB and RB for 6 h and 4 h, respectively. Under the given experimental conditions, the degradation percentage of fabricated Zn-Us were shown ~90% for both model dyes. Compared to cationic MB dye, anionic RB dye is more actively degraded on the surface of prepared photocatalysts. The results obtained can be effectively used for future practical applications in wastewater treatment


2020 ◽  
Vol 81 (6) ◽  
pp. 1296-1307
Author(s):  
R. Jeyachitra ◽  
S. Kalpana ◽  
T. S. Senthil ◽  
Misook Kang

Abstract Methylene blue (MB) dye is the most common harmful, toxic, and non-biodegradable effluent produced by the textile industries. The present study investigates the effect of zinc oxide (ZnO) nanoparticles (NPs) and Ag–Ni doped ZnO NPs on the performance of photocatalytic degradation of MB dye. Pure ZnO and Ag–Ni doped ZnO NPs are synthesized using the co-precipitation method. The crystalline nature and surface morphology of the synthesized pure ZnO and Ag–Ni doped ZnO NPs was characterized by powder X-ray diffraction, scanning electron microscopy (SEM), and high resolution transmission electron microscopy (HRTEM) analysis. The presence of spherical-like morphologies was confirmed from SEM and HRTEM analysis. The presence of Ni–O and Zn–O bands in the synthesized materials was found by Fourier transform infrared (FTIR) spectroscopy analysis. The MB dye was degraded under UV-light exposure in various pH conditions. The Ag (0.02%)–Ni doped ZnO NPs exhibits highest photocatalytic activity of 77% under pH 4.


NANO ◽  
2013 ◽  
Vol 08 (01) ◽  
pp. 1350007 ◽  
Author(s):  
SURENDER KUMAR ◽  
P. D. SAHARE

We synthesized the nanoparticles of Bi4V2O11 with particle size less than 30 nm by combustion method and they were found to be in monoclinic phase (i.e., α-phase), confirmed by X-ray diffraction, Raman and Fourier transform Infrared spectroscopy. Morphology of the α- Bi4V2O11 was analyzed by transmission electron microscopy and scanning electron microscopy techniques. Photocatalytic activity of α- Bi4V2O11 in degradation of common organic dyes, such as, Rhodamine B (Rh B) and Methylene Blue (MB) was investigated under UV irradiation. Furthermore, γ- Bi4V2O11 was obtained by post annealing treatment of α- Bi4V2O11 to investigate the phase transition and size dependent effects on photocatalytic activity. α- Bi4V2O11 has shown better photocatalytic activity compared to γ- Bi4V2O11 which is attributed to its smaller particle size enhancing its surface to volume ratio and being in a different phase. BET measurement is also performed in order to observe the effect of surface area on photocatalytic activity. Complete removal of aqueous Rh B dye was realized after UV light irradiation for 45 min with α- Bi4V2O11 as the photocatalyst.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Shanhu Liu ◽  
Baoshun Liu ◽  
Kazuya Nakata ◽  
Tsuyoshi Ochiai ◽  
Taketoshi Murakami ◽  
...  

Porous TiO2nanofibers were prepared via a facile electrospinning method. The carbon nanospheres were mixed with the ethanol solution containing both poly(vinylpyrrolidone) and titanium tetraisopropoxide for electrospinning; and subsequent calcination of as-spun nanofibers led to thermal decomposition of carbon nanospheres, leaving behind pores in the TiO2nanofibers. The morphology and phase structure of the products were investigated with scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). Furthermore, the photocatalytic activity of porous TiO2nanofibers was evaluated by photodecomposition of methylene blue under UV light. Results showed that the porous TiO2nanofibers have higher surface area and enhanced photocatalysis activity, compared to nonporous TiO2nanofibers.


Catalysts ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 966
Author(s):  
Yu-Wen Chen ◽  
Yu-Hsuan Hsu

The aim of this study was to investigate the effects of reaction temperature on the photocatalytic activity of TiO2 with Pd and Cu cocatalysts. N2 sorption, transmission electron microscopy and high-resolution transmission electron microscopy were used to characterize the specific surface area, pore volume, pore size, morphology and metal distribution of the catalysts. The photocatalytic destruction of methylene blue under UV light irradiation was used to test its activity. The concentration of methylene blue in water was determined by UV-vis spectrophotometer. Pd/TiO2 catalyst was more active than Cu/TiO2 and TiO2. At 0–50 °C reaction temperature, the activity of TiO2 and Pd/TiO2 increased with an increase of reaction temperature. When the temperature was as high as 70 °C, the reaction rate of TiO2 drop slightly and Pd/TiO2 became less effective. In contrast, Cu/TiO2 was more active at room temperature than the other temperatures. The results indicate that the photocatalytic activity of the catalyst is influenced by the reaction temperature and the type of cocatalyst. When the reaction temperature is higher than 70 °C, the recombination of charge carriers will increase. The temperature range of 50–80 °C is regarded as the ideal temperature for effective photolysis of organic matter. The effects of reaction temperature mainly influence quantum effect, i.e., electron-hole separation and recombination.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Lingling Wang ◽  
Long Shen ◽  
Luping Zhu ◽  
Haiying Jin ◽  
Naici Bing ◽  
...  

SnO2nanoparticles coated on nitrogen-doped carbon nanotubes were prepared successfully via a simple wet-chemical route. The as-obtained SnO2/CNx composites were characterized using X-ray powder diffraction, scanning electron microscopy, and transmission electron microscopy. The photocatalytic activity of as-prepared SnO2/CNx for degradation Rhodamine B under UV light irradiation was investigated. The results show that SnO2/CNx nanocomposites have a higher photocatalytic activity than pure SnO2and SnO2/CNTs nanocomposites. This enhanced photoresponse indicates that the photoinduced electrons in the SnO2prefer separately transferring to the CNx, which has a high degree of defects. As a consequence, the radiative recombination of the electron-hole pairs is hampered and the photocatalytic activity is significantly enhanced for the SnO2/CNx photocatalysts.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Anukorn Phuruangrat ◽  
Waipawan Kongpet ◽  
Oranuch Yayapao ◽  
Budsabong Kuntalue ◽  
Somchai Thongtem ◽  
...  

Sb doped ZnO nanostructures were synthesized by an ultrasonic-assisted method. Effect of Sb dopant on the structure, morphology, and composition of as-synthesized Sb doped ZnO nanostructures was investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) spectroscopy, and transmission electron microscopy (TEM). All samples were identified to wurtzite hexagonal ZnO structure. UV-visible spectra of the as-synthesized 3% Sb doped ZnO sample exhibit broad absorption bands at around 343 nm which is blue shift of 373 nm of pure ZnO. The photocatalytic activity was tested by decolorization of methylene blue (MB) solution under UV light. After 300 min irradiation, the degradation efficiencies were 56, 90, and 95% for ZnO, 1% Sb doped ZnO, and 3% Sb doped ZnO, respectively. The 3% Sb doped ZnO shows the highest photocatalytic activity than any other samples.


Sign in / Sign up

Export Citation Format

Share Document