scholarly journals Effects of Reaction Temperature on the Photocatalytic Activity of TiO2 with Pd and Cu Cocatalysts

Catalysts ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 966
Author(s):  
Yu-Wen Chen ◽  
Yu-Hsuan Hsu

The aim of this study was to investigate the effects of reaction temperature on the photocatalytic activity of TiO2 with Pd and Cu cocatalysts. N2 sorption, transmission electron microscopy and high-resolution transmission electron microscopy were used to characterize the specific surface area, pore volume, pore size, morphology and metal distribution of the catalysts. The photocatalytic destruction of methylene blue under UV light irradiation was used to test its activity. The concentration of methylene blue in water was determined by UV-vis spectrophotometer. Pd/TiO2 catalyst was more active than Cu/TiO2 and TiO2. At 0–50 °C reaction temperature, the activity of TiO2 and Pd/TiO2 increased with an increase of reaction temperature. When the temperature was as high as 70 °C, the reaction rate of TiO2 drop slightly and Pd/TiO2 became less effective. In contrast, Cu/TiO2 was more active at room temperature than the other temperatures. The results indicate that the photocatalytic activity of the catalyst is influenced by the reaction temperature and the type of cocatalyst. When the reaction temperature is higher than 70 °C, the recombination of charge carriers will increase. The temperature range of 50–80 °C is regarded as the ideal temperature for effective photolysis of organic matter. The effects of reaction temperature mainly influence quantum effect, i.e., electron-hole separation and recombination.

MRS Advances ◽  
2019 ◽  
Vol 4 (61-62) ◽  
pp. 3423-3431
Author(s):  
Daniela K. Calvo-Ramos ◽  
Marina Vega-González ◽  
José Santos-Cruz ◽  
Francisco Javier De Moure-Flores ◽  
Sandra A. Mayén-Hernández

ABSTRACTNanoparticles of titanium dioxide (TiO2), synthesized by the sonochemical technique, were mixed with different amounts of graphene oxide (GO), obtained by the improved method of Hummer, in order to modify their bandwidth. The TiO2/OG compounds were characterized using different techniques: X-ray Diffraction (XRD), transmission electron microscopy (TEM), Raman and UV-Vis-NIR spectroscopy. TiO2 bandgap decreased, with GO incorporation, from 3.2 to 2.72 eV when GO was present at 20 weigh percentage (TiO2/GO-20%). Photodegradation experiments of methylene blue (MB) were performed with the materials to verify their photocatalytic activity. At 40 minutes, the pure TiO2 degraded 48% of MB, whereas the compound TiO2/GO-20% degraded 88%, showing a good incorporation of both compounds and the improvement of TiO2 photocatalitic properties.


NANO ◽  
2013 ◽  
Vol 08 (06) ◽  
pp. 1350062 ◽  
Author(s):  
SHIYONG BAO ◽  
HAN ZHU ◽  
PAN WANG ◽  
MEILING ZOU ◽  
MINGLIANG DU ◽  
...  

A facile and green route was introduced to synthesize Pt nanoparticles (PtNPs) immobilized on Cu 2 O octahedrons to form Cu 2 O – Pt hierarchical heterostructure. Transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM), high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) were employed to study their morphology, chemical and crystallographic properties of the Cu 2 O – Pt hierarchical heterostructure. These novel Cu 2 O – Pt hierarchical heterostructures show fascinating degradations of methylene blue (MB), due to the suppressed electron/hole recombination phenomena and the efficient ability to capture the light.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Lingling Wang ◽  
Long Shen ◽  
Luping Zhu ◽  
Haiying Jin ◽  
Naici Bing ◽  
...  

SnO2nanoparticles coated on nitrogen-doped carbon nanotubes were prepared successfully via a simple wet-chemical route. The as-obtained SnO2/CNx composites were characterized using X-ray powder diffraction, scanning electron microscopy, and transmission electron microscopy. The photocatalytic activity of as-prepared SnO2/CNx for degradation Rhodamine B under UV light irradiation was investigated. The results show that SnO2/CNx nanocomposites have a higher photocatalytic activity than pure SnO2and SnO2/CNTs nanocomposites. This enhanced photoresponse indicates that the photoinduced electrons in the SnO2prefer separately transferring to the CNx, which has a high degree of defects. As a consequence, the radiative recombination of the electron-hole pairs is hampered and the photocatalytic activity is significantly enhanced for the SnO2/CNx photocatalysts.


NANO ◽  
2016 ◽  
Vol 11 (10) ◽  
pp. 1650114 ◽  
Author(s):  
Dan Li ◽  
Jianwei Li ◽  
Caiqin Han ◽  
Xinsheng Zhao ◽  
Haipeng Chu ◽  
...  

Few-layered MoS2 nanostructures were successfully synthesized by a simple hydrothermal method without the addition of any catalysts or surfactants. Their morphology, structure and photocatalytic activity were characterized by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy, electrochemical impedance spectra and UV-Vis absorption spectroscopy, respectively. These results show that the MoS2 nanostructures synthesized at 180[Formula: see text]C exhibit an optimal visible light photocatalytic activity (99%) in the degradation of Rhodamine B owing to the relatively easier adsorption of pollutants, higher visible light absorption and lower electron–hole pair recombination.


Minerals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 132
Author(s):  
Maicon O. Miranda ◽  
Bartolomeu Cruz Viana ◽  
Luzia Maria Honório ◽  
Pollyana Trigueiro ◽  
Maria Gardênnia Fonseca ◽  
...  

Titanium and zirconium oxides (TiO2 and ZrO2, respectively) were obtained from alkoxides hydrolyses, and then deposited into palygorskite clay mineral (Pal) to obtain new materials for photocatalytic applications. The obtained materials were characterized by structural, morphological, and textural techniques. X-ray diffraction (XRD) results confirmed the characteristic peaks of oxides and clay transmission electron microscopy (TEM) and scanning electron microscopy (SEM) images of the modified palygorskite with both oxides showed that the clay was successfully modified by the proposed method. The increase in the specific surface area of the clay occurred when TiO2 and ZrO2 were deposited on the surface. The photocatalytic activity of these materials was investigated using the Remazol Blue anion dye under UV light. The evaluated systems presented high photocatalytic activity, reaching approximately 98% of dye discoloration under light. Thus, TiO2–Pal and ZrO2–TiO2–Pal are promising clay mineral-based photocatalysts.


Polymers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2060
Author(s):  
Alejandro Roche ◽  
Luis Oriol ◽  
Rosa M. Tejedor ◽  
Milagros Piñol

Most of reported polymeric light-responsive nanocarriers make use of UV light to trigger morphological changes and the subsequent release of encapsulated cargoes. Moving from UV- to visible-responsive units is interesting for the potential biomedical applications of these materials. Herein we report the synthesis by ring opening polymerization (ROP) of a series of amphiphilic diblock copolymers, into which either UV or visible responsive azobenzenes have been introduced via copper(I) catalyzed azide-alkyne cycloaddition (CuAAC). These copolymers are able to self-assemble into spherical micelles or vesicles when dispersed in water. The study of the response of the self-assemblies upon UV (365 nm) or visible (530 or 625 nm) light irradiation has been studied by Transmission Electron Microscopy (TEM), Cryogenic Transmission Electron Microscopy (Cryo-TEM), and Dynamic Light Scattering (DLS) studies. Encapsulation of Nile Red, in micelles and vesicles, and Rhodamine B, in vesicles, and its light-stimulated release has been studied by fluorescence spectroscopy and confocal microscopy. Appreciable morphological changes have been induced with green light, and the subsequent release of encapsulated cargoes upon green light irradiation has been confirmed.


2013 ◽  
Vol 634-638 ◽  
pp. 2475-2480
Author(s):  
Ai Min Tang ◽  
Ting Ting Hu ◽  
Xia Su

Microcrystalline cellulose (MCC)/cadmium sulfide (CdS) nanocomposites were prepared by using ultrasound wave irradiation. The as-prepared samples were characterized using scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS), atomic absorption spectrometry (AAS), transmission electron microscopy (TEM). The photocatalytic behavior of MCC/CdS nanocomposites was evaluated using the degradation of a methyl orange (MeO) aqueous solution under ultraviolet (UV) light irradiation. Results showed that CdS nanoparticles were evenly distributed on the surface of MCC with little aggregation; the amount of Cd attached to the MCC was 23.75 % (w/w, Cd/composites). The MeO degradation rate was much higher when the MCC/CdS nanocomposites were irradiated with UV light than when CdS powder alone was irradiated. In dark conditions, the MCC/CdS nanocomposites showed almost no photocatalytic activity. In addition, the amount of MCC/CdS nanocomposites added to MeO solution and the initial pH of the MeO solution were also important factors influencing the photocatalytic activity. The results show that MCC/CdS nanocomposites are promising materials with excellent performance in photocatalytic applications.


2012 ◽  
Vol 512-515 ◽  
pp. 334-338 ◽  
Author(s):  
Tie Kun Jia ◽  
Fan Zhang ◽  
Xiao Feng Wang ◽  
Wei Min Wang

Zn-doped SnO2 seaflower like hierarchical architectures have been synthesized via a solvothermal synthesis route in the mixed solvents of ethanol and deionized water. The observations of field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) showed that Zn-doped SnO2 seaflower like hierarchical architectures were assembled by the nanowires. The preferential growth direction of nanowires was determined based on the analysis of high resolution transmission electron microscopy (HRTEM). The products were also characterized by X-ray diffraction (XRD) and X-photoelectron spectrum (XPS), and the results indicated that Sn4+ ions were successfully substituted by Zn2+. The photocatalytic activity of Zn-doped SnO2 seaflower like hierarchical architectures was evaluated by the degradation of RhB aqueous solution and the results showed that the product had high photocatalytic activity efficiency.


2013 ◽  
Vol 709 ◽  
pp. 7-10
Author(s):  
Jing Li ◽  
Xi Hua Du ◽  
Wei Min Dai ◽  
Yong Cai Zhang

A low temperature (130 °C) hydrothermal method was proposed for the synthesis of SnO2-SnS2 nanocomposite. The composition, structure and optical property of the as-synthesized SnO2-SnS2 nanocomposite were characterized by X-ray diffraction, energy dispersive X-ray spectroscopy, transmission electron microscopy, high-resolution transmission electron microscopy and UV-vis diffuse reflectance spectra, and its photocatalytic activity was tested by the reduction of Cr(VI) in water under visible light (λ > 420 nm) irradiation. It was found that the as-synthesized SnO2-SnS2 nanocomposite exhibited high photocatalytic activity in the reduction of Cr(VI) in water under visible light (λ > 420 nm) irradiation, whereas SnO2 nanoparticles displayed no photocatalytic activity in the reduction of Cr(VI) in water under visible light (λ > 420 nm) irradiation.


2011 ◽  
Vol 335-336 ◽  
pp. 460-463 ◽  
Author(s):  
Hong Mei Wang ◽  
Da Peng Zhou ◽  
Yuan Lian ◽  
Ming Pang ◽  
Dan Liu

Hexagonal flower-like CdS nanostructures were successfully synthesized through a facile hydrothermal method with thiourea as sulfur source. By combining the results of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), the structural and morphological characterizations of the products were performed. The photocatalytic activity of CdS nanostructures had been tested by degradation of Rhodamine B (RB) under UV light compared to commercial CdS powders, which indicated that the as-syntherized CdS nanostructures exhibited enhanced photocatalytic activity for degradation of RB. The possible growth mechanism of CdS nanostructures was proposed in the end.


Sign in / Sign up

Export Citation Format

Share Document