scholarly journals Investigation of Functionally Graded Adherents on Failure of Socket Joint of FRP Composite Tubes

Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6365
Author(s):  
Chander Prakash ◽  
Vidyapati Kumar ◽  
Ankita Mistri ◽  
Amrinder Singh Uppal ◽  
Atul Babbar ◽  
...  

Fiber-reinforced polymer (FRP) matrix materials are quickly being investigated for application in concrete construction repair, reinforcement, and refurbishment. The technology has progressed to the point that its future acceptance is mainly reliant on the availability of established design guidelines based on recognized performance criteria, as well as the cost competitiveness of these technologies in contrast to conventional rehabilitation methods. The goal of this study is to evaluate the different functional grades of adhesives throughout bond length for bonded socket joints of laminated FRP composite pipes. Damage development resistance is high with a functionally graded FRP composite socket joint, as shown. To extend the service life of the structure, the joint designer should use an FRP composite socket joint with a functionally graded adhesive (FGA).

Fibers ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 53
Author(s):  
Shreya Vemuganti ◽  
Eslam Soliman ◽  
Mahmoud Reda Taha

The use of fiber-reinforced polymer (FRP) composite materials are continuously growing in civil infrastructure due to their high strength, low weight, and manufacturing flexibility. However, FRP is characterized by sudden failure and lacks ductility. When used in construction, gradual failure of FRP components is desired to avoid catastrophic structural collapse. Due to its mechanical orthotropy, the behavior of FRP relies significantly on fiber orientation and stacking sequence. In this paper, a novel multi-angled glass fiber reinforced polymer (GFRP) composite laminate showing pseudo ductile behavior is produced using 3D-printing. This is accomplished by varying fiber orientation angles, stacking sequence, and thickness of lamina. Single-angled GFRP composite specimens were 3D-printed with different fiber orientation angles of 0°, 12°, 24°, 30°, 45°, and 90° using continuous and fused filament techniques. The tension test results of the single-angled specimens were then used to aid the design of multi-angled laminate for potential progressive failure behavior. A 3D finite element (FE) model was developed to predict the response of the experimental results and to provide insight into the failure mechanism of the multi-angled laminate. The experimental observations and the FE simulations show the possibility of producing pseudo ductile FRP-by-design composite using 3D-printing technology, which leads the way to fabricate next-generation composites for civil infrastructure.


2007 ◽  
Vol 23 (3) ◽  
pp. 635-664 ◽  
Author(s):  
Chris P. Pantelides ◽  
Jeffrey B. Duffin ◽  
Lawrence D. Reaveley

The analysis, seismic rehabilitation measures, and in-situ performance of a reinforced-concrete (RC) bridge pier subjected to quasi-static loads are presented. The bridge was built in 1963 and was designed for gravity and wind but not seismic loads. The reinforcement details are compared with AASHTO requirements for seismic zones 3 and 4. The bridge pier was rehabilitated with steel dowels connecting the piles to the pile caps and RC grade beam connecting the three pile caps; carbon Fiber-Reinforced-Polymer (FRP) composite jackets were used to rehabilitate the columns, cap beam, and T-joints. An analytical model is presented that includes the effects of soil-pile-structure interaction and the seismic rehabilitation measures. Critical events in the experimental performance of the bridge pier are identified. Comparisons are made between the pier's performance and that of other piers tested in situ at the same site that were rehabilitated with incremental measures.


2018 ◽  
Vol 37 (10) ◽  
pp. 685-700 ◽  
Author(s):  
Weiwen Li ◽  
Chengyue Hu ◽  
Zejie Pan ◽  
Wei Peng ◽  
Yong Yang ◽  
...  

Many factors can affect the shear capacity of fiber-reinforced polymer in reinforced concrete beams shear-strengthened with externally bonded fiber-reinforced polymer composites. Undoubtedly, the interaction of concrete-stirrup-fiber-reinforced polymer system is one of the key factors. However, most of the existing fiber-reinforced polymer design guidelines do not take account of this important factor on predicting fiber-reinforced polymer shear capacity. This study provides an advanced strengthening model that comprehensively considers the interaction among concrete, stirrup, and fiber-reinforced polymer for calculating the fiber-reinforced polymer effective strain. The advanced strengthening model provides a more accurate prediction for the fiber-reinforced polymer shear contribution compared with existing design guidelines.


Author(s):  
Pierre Mertiny ◽  
Fernand Ellyin

Advanced fiber-reinforced polymer composite pipes offer high strength and superior corrosion resistance properties compared to conventional metallic pipeline materials. However, damage mechanisms in composite pipes are not fully understood and failure prediction methodologies are currently inadequate. Research is required to resolve these deficiencies which are an encumbrance to the certification of high-pressure composite pipe and its introduction into service. This is underlined by the findings reviewed in the present paper which derive from a comprehensive study on the performance and damage mechanisms in composite pipes and joint modules.


MRS Bulletin ◽  
2008 ◽  
Vol 33 (8) ◽  
pp. 770-774 ◽  
Author(s):  
Ian P. Bond ◽  
Richard S. Trask ◽  
Hugo R. Williams

AbstractSelf-healing is receiving an increasing amount of interest worldwide as a method to address damage in materials. In particular, for advanced high-performance fiber-reinforced polymer (FRP) composite materials, self-healing offers an alternative to employing conservative damage-tolerant designs and a mechanism for ameliorating inaccessible and invidious internal damage within a structure. This article considers in some detail the various self-healing technologies currently being developed for FRP composite materials. Key constraints for incorporating such a function in FRPs are that it not be detrimental to inherent mechanical properties and that it not impose a severe weight penalty.


2002 ◽  
Vol 124 (4) ◽  
pp. 397-404 ◽  
Author(s):  
H. Estrada ◽  
I. D. Parsons

The design procedures for an innovative fiber-reinforced polymer (FRP) stub-flange joint are presented. The joint is intended for use with filament-wound pipes, and was developed to address some of the problems associated with current FRP joints. Detailed design guidelines for proportioning the joint are presented in this paper. The design calculations are relatively simple and compare well with more detailed finite element calculations.


Sign in / Sign up

Export Citation Format

Share Document