scholarly journals Hydration Patterns in Sodium Alginate Polymeric Matrix Tablets—The Result of Drug Substance Incorporation

Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6531
Author(s):  
Ewelina Juszczyk ◽  
Piotr Kulinowski ◽  
Ewelina Baran ◽  
Artur Birczyński ◽  
Jolanta Klaja ◽  
...  

The purpose was to show, using destructive/nondestructive methods, that the interplay between water, tablet structure, and composition determine the unique spatiotemporal hydration pattern of polymer-based matrices. The tablets containing a 1:1 w/w mixture of sodium alginate with salicylic acid (ALG/SA) or sodium salicylate (ALG/SNA) were studied using Karl Fischer titration, differential scanning calorimetry, X-ray microtomography, and magnetic resonance imaging. As the principal results, matrix specific features were detected, e.g., “locking” of the internal part of the matrix (ALG/SA); existence of lamellar region associated with detection of free/freezing water (ALG/SA); existence of water penetrating the matrix forming specific region preceding infiltration layer (ALG/SNA); switch in the onset temperature of endothermic water peak associated with an increase in the fraction of non-freezing water weight per dry matrix weight in the infiltration layer (ALG/SNA). The existence of complicated spatiotemporal hydration patterns influenced by matrix composition and molecular properties of constituents has been demonstrated.

Author(s):  
Poreddy Srikanth Reddy ◽  
Penjuri Subhash Chandra Bose ◽  
Vuppula Sruthi ◽  
Damineni Saritha

The aim of the present work was to prepare floating tablets of galantamine HBr using sodium alginate and xanthan gum as matrix forming carriers. Galantamine HBr is used for the treatment of mild to moderate Alzheimer's disease and various other memory impairments, in particular those of vascular origin. The matrix tablet formulations were prepared by varying the concentrations of sodium alginate and xanthan gum. The tablets were prepared by direct compression technique using PVP K-30 as a binder and sodium bicarbonate for development of CO2. The prepared matrix tablets were evaluated for properties such as hardness, thickness, friability, weight variation, floating lag time, compatibility using DSC and FTIR. In vitro dissolution was carried out for 12 hrs in 0.1N HCl at 37±0.5 ºC using USP paddle type dissolution apparatus. It was noted that, all the prepared formulations had desired floating lag time and constantly floated on dissolution medium by maintaining the matrix integrity. The drug release from prepared tablets was found to vary with varying concentration of the polymers, sodium alginate and xanthan gum. From the study it was concluded that floating drug delivery system for galantamine HBr can be prepared by using sodium alginate and xanthan gum as a carrier.


2017 ◽  
Vol 899 ◽  
pp. 36-41 ◽  
Author(s):  
Josiane R. Silvano ◽  
J.M.M. Mello ◽  
Lucinao Luiz Silva ◽  
Humberto Gracher Riella ◽  
Márcio Antônio Fiori

A major challenge in the manufacture of films for polymeric packaging is the definition and setting of the friction coefficient (FCO) for the film surfaces. The FCO values are established with the incorporation of additives during the processing of the polymeric films. But, the homogenization of these additives in the polymeric matrix is very difficult. The additives have different polarity that the matrix polymeric and not are mixable. So, these additives migrate for the surface of the polymeric films easily. Several molecules are used as sliding additives, but among the most efficient are the amides molecules, highlighting the erucamide. This molecule promotes the decrease of the FOC but due its quick migration for the polymeric film surface provides numerous problems for the manufacture of the polymeric packaging and during its application as the product. In this work a nanocomposite (MMT-ERU) was obtained by an intercalation process to improve the compatibility between the polymeric materials and the erucamide molecules. The results shown in this work refers to the studies about the intercalation processes of the erucamide molecules into nanoclays (montmorillonite) to obtain the nanocomposite MMT-ERU. The effect of the temperature and the percentage of the nanoclay in the intercalation processes were studied. The results of x-ray diffraction and differential scanning calorimetry shown that erucamide molecules were intercalated in the nanoclay structures and that intercalation efficiency depends positively of the temperature and percentage amount of the nanoclay in the reaction medium.


1993 ◽  
Vol 03 (02) ◽  
pp. 145-176 ◽  
Author(s):  
F. MUNNIK ◽  
P.H.A. MUTSAERS ◽  
E. ROKITA ◽  
M.J.A. de VOIGT

In this article the uncertainty in the PIXE yield due to the uncertainty in various parameters such as the ionization cross section, the stopping power, the X-ray attenuation coefficient, the matrix composition and the proton beam energy, is discussed. This is done for both the primary PIXE and the secondary fluorescence yield. A numerical approach to the propagation of an uncertainty in a parameter to the uncertainty in the yield is given. For this a new parameter, the propagation factor, which is the partial relative error in the yield due to the error in a parameter divided by the relative error in the parameter, is introduced. The dependence of the propagation factor on the X-ray and proton energies and or the matrix composition is investigated for the above named parameters. The physical background of these dependencies is explained; this also makes it possible to obtain a better physical insight in the formulas for the primary yield and the secondary fluorescence yield.


2021 ◽  
Vol 39 (No. 5) ◽  
pp. 360-367
Author(s):  
Achmat Sarifudin ◽  
Enny Sholichah ◽  
Woro Setiaboma ◽  
Nok Afifah ◽  
Dewi Desnilasari ◽  
...  

Native cassava flour can be modified to be instant flour by heating the cassava flour in ethanol solution. The impact of heating temperatures of 60, 80, and 100 °C (coded as ICF-60, ICF-80, and ICF-100) on the properties of instant cassava flour (ICF), including colour, morphological, and thermal properties, water absorption, and solubility indexes and pasting behaviour, were investigated. Results showed that ICF produced at higher temperatures exhibited lower lightness, higher redness, and yellowness values. ICF-60 and ICF-80 still displayed the granular forms and birefringence properties of native starches, while granules of ICF-100 were broken and partially lost their birefringence properties. Results of X-ray diffraction (XRD) technique and differential scanning calorimetry (DSC) analysis suggested that the amylopectin double helixes of crystalline regions within the structure of ICF orientated to more perfect conformation before they were disrupted at the highest heating temperature (100 °C). During hydration, the starch granules of ICF-60 and ICF-80 absorbed water into their granules; meanwhile, ICF-100 entrapped water within the matrix formed by the entanglements of ICF-100 particles. Results of pasting behaviour analysis indicated that ICF-60 and ICF-80 showed better thermal stability while ICF-100 exhibited the highest cold viscosity.


Author(s):  
Vidya Viswanad ◽  
Shammika P ◽  
Aneesh Tp

ABSTRACTObjective: The current research deals with the formulation and evaluation of synthesized quinazolinone derivative for colon site specific delivery.Methods: The synthesized quinazolinone derivative was enteric coated 5% Eudragit L-100 with by wet granulation method using guar gum, pectin,and guar gum pectin combination as hydrophilic polymer. The prepared matrix tablet was characterized by differential scanning calorimetry andevaluated for different pre-compression and post-compression studies and drug release profiles.Results: All the matrix tablets were within the range of pharmacopeial limits with better flow properties. All the six formulations of matrix tablets haddisintegrated within 5-6 minutes. The optimized formulation selected was F6 formulation combination of guar gum and pectin with 95.79% of drugrelease than compared to the remaining formulation. The optimized matrix tablets followed zero order kinetics with Fickian diffusion.Conclusion: The results proposed that the combination of guar gum and pectin coated tablet with 5% Eudragit L-100 of synthesized quinazolinonederivative is a promising colon site specific delivery.Keywords: Quinazolinone derivative, In vitro drug release, Disintegration time, Guar gum, Pectin, 5% Eudragit L-100, Colon site-specific delivery, Wetgranulation, Compression.


2011 ◽  
Vol 217-218 ◽  
pp. 684-687
Author(s):  
Jian Feng Zhu ◽  
Wen Wen Yang ◽  
Shao Dan Li

Full dense and highly pure TiAl/Ti5Si3 in situ composite was successfully synthesized by reactive synthesis from the powder mixtures of Ti, Al and Si. The reaction process was investigated in detail by the X-ray diffraction analysis (XRD) and differential scanning calorimetry (DSC). The microstructural characteristics of the TiAl/Ti5Si3 in situ composite were also studied by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The results show that the as fabricated composite possesses three phases, namely, TiAl, Ti3Al and Ti5Si3. The matrix phases are mainly equiaxed TiAl with a minor lamellar Ti3Al phase. Ti5Si3 particles with size less than 1 μm are distributed uniformly in matrix grains as a reinforcing phase.


2021 ◽  
Vol 11 (9) ◽  
pp. 3857
Author(s):  
Nikola Nowak ◽  
Wiktoria Grzebieniarz ◽  
Gohar Khachatryan ◽  
Karen Khachatryan ◽  
Anna Konieczna-Molenda ◽  
...  

Polymer nanocomposites containing nanometals became a subject of interest due to their bactericidal properties. Different polysaccharides have been used as matrices for nanosilver and nanogold synthesis. In this study, we present a novel, environmentally friendly method for the preparation of sodium alginate/nanosilver/graphene oxide (GOX) and sodium alginate/nanogold/graphene oxide GOX nanocomposites and their characteristics. The formation of approximately 10–20 nm ball-shaped Ag and Au nanoparticles was confirmed by UV–vis spectroscopy, scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectra. The incorporation of GOX sheets within the ALG matrix improved the thermal stability of the nanocomposites film, which was measured using the differential scanning calorimetry (DSC). We also estimated the molecular weights of polysaccharide chains of the matrix with the size exclusion chromatography coupled with multiangle laser light scattering and refractometric detectors (HPSEC-MALLS-RI). The composites were more prone to enzymatic hydrolysis. The strongest bacteriostatic activity was observed for the sample containing nanosilver.


Author(s):  
Wim C. de Bruijn ◽  
Lianne W.J. Sorber

The application of standards, with a known externally determined element concentration, for the determination of unknown concentrations in cell organelles and tissue is a well known practice in X-ray microanalysis.The conditions to be met for a good standard have been formulated earlier. Pure element standards and standards made from PVP-films have been proposed for Electron Energy loss analysis. In this presentation we investigate the use for EELS-analysis of the ion-exchange bead Chelex100-type of standards, which can be co-embedded with tissue and have been applied successfully for X-ray microanalysis.The ion-exchange characteristics, the methods of loading and the matrix composition have been described before. Such bio-standards, which can be loaded with a variety of cations, are stored as a dry powder and can be co-embedded with the tissue to be analyzed. In that way the standard is present in each ultrathin section, at (an assumed) equal thickness as the cells or tissue, containing the unknown concentration of that element.


2003 ◽  
Vol 36 (1) ◽  
pp. 74-79 ◽  
Author(s):  
P. Bergese ◽  
I. Colombo ◽  
D. Gervasoni ◽  
Laura E. Depero

Determination of the residual weight fraction of a crystalline drug in a largely amorphous pharmaceutical composite is still a challenging question. None of the quantitative X-ray diffraction (QXRD) methods found in the literature is suitable for these inclusion systems. The composite's diffraction patterns present a structured amorphous halo (arising from the amorphous matrix and drug molecular clusters) in which the crystalline drug peaks rise up. Moreover, the matrix traps a non-negligible quantity of water (which cannot be directly detected by X-ray diffraction) and the crystal structure of the drug may be unknown. In this work, a development of the QXRD analysis based on the diffraction–absorption technique is presented. The method is standardless, avoids the interpretation of the amorphous halo and the knowledge of the crystal structures of the phases, and takes into account the absorbed water. Results are in excellent agreement with those obtained by differential scanning calorimetry (DSC). The general features of the technique open its application to other classes of largely amorphous composite materials, like glass systems generated in the stabilization/solidification of toxic waste.


1980 ◽  
Vol 24 ◽  
pp. 313-321
Author(s):  
Lars-Eric Carlsson ◽  
K. Roland Akselsson

AbstractThe properties of particle-induced X-ray emission, PIXE, and secondary target mode X-ray fluorescence, XRF, applied to the analysis of unprepared drill cores in open air have been evaluated. Typical detection limits for elements heavier than Mg have been determined for a PIXE-system with an external 2.55 MeV proton beam and for an XRF-system with Ti, Mo and Tb secondary targets. These two systems were found to have similar detection limits for most elements in a typical geological sample. The heterogeneous composition of drill cores prevents the performance of accurate matrix corrections, though calculations using fundamental parameters show that in the PIXE analysis of elements heavier than Ca, these corrections are much less sensitive to variations in the matrix composition than in the XRF analysis.


Sign in / Sign up

Export Citation Format

Share Document