Investigation and Improvement on the Mechanical Property of Cement Mortar

2012 ◽  
Vol 253-255 ◽  
pp. 482-488
Author(s):  
Hai Bo Zhang ◽  
Xue Mao Guan ◽  
Hai Tao Shang

This paper examined the mechanical property of rubber mortars with different amount of rubber granules addition and the influence of fly ash, slag and silica fume. The increase of rubber granules results in the decrease in compressive and flexural strength of rubber mortar, but increases the ratio of flexural to compressive strength. The fly ash, slag and silica fume are useful for improving the mechanical property of mortar. The examined contact angle of water against rubber is 99.5°, which suggests the rubber surface is hydrophobic, and the hydrophobic surface interprets the weak interface between rubber and cement matrix.

2019 ◽  
Vol 9 (9) ◽  
pp. 1049-1054
Author(s):  
Yunxia Lun ◽  
Fangfang Zheng

This study is aimed at exploring the effect of steel slag powder (SSP), fly ash (FA), and silica fume (SF) on the mechanical properties and durability of cement mortar. SSP, SF, and FA were used as partial replacement of the Ordinary Portland cement (OPC). It was showed that the compressive and bending strength of steel slag powder were slightly lower than that of OPC. An increase in the SSP content caused a decrease in strength. However, the growth rate of compressive strength of SSP2 (20% replacement by the weight of OPC) at the curing ages of 90 days was about 8% higher than that of OPC, and the durability of SSP2 was better than that of OPC. The combination of mineral admixtures improved the later strength, water impermeability, and sulfate resistance compared with OPC and SSP2. The compressive strength of SSPFA (SSP and SF) at 90 days reached 70.3 MPa. The results of X-ray diffraction patterns and scanning electron microscopy indicated that SSP played a synergistic role with FA or SF to improve the performance of cement mortar.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6654
Author(s):  
Jakub Popławski ◽  
Małgorzata Lelusz

Biomass combustion is a significant new source of green energy in the European Union. The adequate utilization of byproducts created during that process is a growing challenge for the energy industry. Biomass fly ash could be used in cement composite production after appropriate activation of that material. This study had been conducted to assess the usefulness of mechanical and physical activation methods (grinding and sieving), as well as activation through the addition of active silica in the form of silica fume, as potential methods with which to activate biomass fly ash. Setting time, compressive strength, water absorption and bulk density tests were performed on fresh and hardened mortar. While all activation methods influenced the compressive strength development of cement mortar with fly ash, sieving of the biomass fly ash enhanced the early compressive strength of cement mortar. The use of active silica in the form of silica fume ensured higher compressive strength results than those of control specimens throughout the entire measurement period.


2020 ◽  
Vol 870 ◽  
pp. 3-9
Author(s):  
Nahla N. Hilal ◽  
Mohammed T. Nawar ◽  
Abdulkader I. Al-Hadithi

In the present work, the properties of Polyethylene Waste cement mortar containing Polyethylene Waste treated by a reactive material are tested and compared with normal Polyethylene Waste and normal cement mortar. The Polyethylene, which is cured by a different reactive material such as: (cement, a fly ash and silica fume) is used as fine as aggregate a volumetric fractional replacing of the sand in a cement mortar. The percent of replacement was 10% by volume, density, compressive strength, modulus of rupture, and absorption are tested for all mixes at variable ages. The current results display that the cure of Polyethylene by cement were significantly improves the characteristics of Polyethylene cement mortar. Moreover, the results show that all treatment improved properties of cement mortar as a compared with Polyethylene without treatment.


2014 ◽  
Vol 875-877 ◽  
pp. 383-387 ◽  
Author(s):  
Teuku Ferdiansyah ◽  
Hashim Abdul Razak

The purpose of this paper is to discuss the influence of mineral additives i.e. metakaolin, silica fume, rice ash and fly ash incorporating with nanocarbontubes mortar composites. The effects on compressive strength at 28 days were also discussed and presented. Cement content of 500 kg/m3, water/cement ratio of 0.6 and aggregate/cement ratio of 2.75 were adopted for the mix propotion. 1%, 3% and 5% of nanocarbontubes in mortar were combined with 15% of mineral additives. The results show that mixtures of nanocarbontubes with 15% of metakaolin produce better strength compared to normal mortar. Meanwhile with addition of fly ash and rice husk ash the strength were decreased. The electrical resistance for all mixes at 28 days were also discussed and presented. The higher percentages of nanocarbon with addition of all mineral additives resulted in lower electrical resistance properties


2012 ◽  
Vol 174-177 ◽  
pp. 1446-1449 ◽  
Author(s):  
Xiao Hong Cong ◽  
Bin Xue ◽  
Jing Sun ◽  
Xiao Wei Sun

Cement mortar as the basic material and the fly ash and silicon fume as the research object, experiment and research were operated through adjusting the admixture replacing dosage and changing the mixture ratio of silica fume and fly ash. By testing the fluidity and strength and data analysis and discussion, some conclusions are drawn from the analysis, such as: fly ash makes the fluidity increasing with the admixture replacing dosage below 30%, and the fluidity declines with the mixture ratio of silica fume and fly ash increasing. 7d compressive strength decreases with the admixture replacing dosage increasing, 7d compressive strength increases slowly with the mix ratio of silica fume and fly ash. With the mix ratio of silica fume and fly ash increasing, 28d compressive strength of mortar also increases, and proper mix ratio of silica fume and fly ash is 1:1.


2013 ◽  
Vol 671-674 ◽  
pp. 1869-1872 ◽  
Author(s):  
Wen Min He ◽  
Shuan Fa Chen ◽  
Chuang Wang ◽  
Xue Gang Zhang ◽  
Rui Xiong

Basalt fiber (BF) has a lot of advantageous properties. The actual effectiveness of the fiber depends greatly on their dispersion degree in the composites. With the help of ultrasonic wave and a dispersant carboxymethyl cellulose (CMC), the even dispersion of short basalt fibers in water is realized. The fluidity of the basalt fiber cement mortar becomes less as the fiber content increasing. When the fluidity of mortar of BFRC is greater than 170mm, the even dispersion of short basalt fibers in BFRC can be realized. Fly ash can effectively improve the fluidity of BFRC and the density of cement matrix. When the amount of fly ash replaces the cement less than 25% by weight, it can improve both the compressive strength and tensile strength at age of 28 days.


2011 ◽  
Vol 343-344 ◽  
pp. 316-321 ◽  
Author(s):  
Watcharapong Wongkeo ◽  
Pailyn Thongsanitgarn ◽  
Arnon Chaipanich

Cement industry is a one of the major sources of environmental pollution therefore the reduction of cement demand should be improved. Fly ash and silica fume is a by-product of industries and it should be reused to reduce the waste pollution. Thus, this study investigated the use of fly ash and silica fume as a cement replacement in binary and ternary blended cements on compressive strength and physical properties of mortar. Autoclaved curing at 130 °C and 20 psi of pressure for 9 h was used in this study. The results show that the compressive strength of binary blended cement mortar with FA tends to decrease with increased FA replacement and shows compressive strength lower than PC control. However, compressive strength of binary blended cement mortar with SF was improved and shows compressive strength higher than that of PC control. The compressive strength of ternary blended cement mortar was higher than binary blended cement at the same level replacement and it increases with increased SF replacement. Moreover, ternary blended cement mortar containing 10%SF by weight contribute in giving compressive strength higher than PC control. The incorporation of FA with SF can enhance workability of blended cement mortar containing only SF replacement.


2018 ◽  
Vol 17 (9) ◽  
pp. 2023-2030
Author(s):  
Arnon Chaipanich ◽  
Chalermphan Narattha ◽  
Watcharapong Wongkeo ◽  
Pailyn Thongsanitgarn

Materials ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 2694 ◽  
Author(s):  
Shansuo Zheng ◽  
Lihua Niu ◽  
Pei Pei ◽  
Jinqi Dong

In order to evaluate the deterioration regularity for the mechanical properties of brick masonry due to acid rain corrosion, a series of mechanical property tests for mortars, bricks, shear prisms, and compressive prisms after acid rain corrosion were conducted. The apparent morphology and the compressive strength of the masonry materials (cement mortar, cement-lime mortar, cement-fly ash mortar, and brick), the shear behavior of the masonry, and the compression behavior of the masonry were analyzed. The resistance of acid rain corrosion for the cement-lime mortar prisms was the worst, and the incorporation of fly ash into the cement mortar did not improve the acid rain corrosion resistance. The effect of the acid rain corrosion damage on the mechanical properties for the brick was significant. With an increasing number of acid rain corrosion cycles, the compressive strength of the mortar prisms, and the shear and compressive strengths of the brick masonry first increased and then decreased. The peak stress first increased and then decreased whereas the peak strain gradually increased. The slope of the stress-strain curve for the compression prisms gradually decreased. Furthermore, a mathematical degradation model for the compressive strength of the masonry material (cement mortar, cement-lime mortar, cement-fly ash mortar, and brick), as well as the shear strength attenuation model and the compressive strength attenuation model of brick masonry after acid rain corrosion were proposed.


Sign in / Sign up

Export Citation Format

Share Document