scholarly journals Auxetic Structures for Tissue Engineering Scaffolds and Biomedical Devices

Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6821
Author(s):  
Yujin Kim ◽  
Kukhui Son ◽  
Jinwoo Lee

An auxetic structure utilizing a negative Poisson’s ratio, which can expand transversally when axially expanded under tensional force, has not yet been studied in the tissue engineering and biomedical area. However, the recent advent of new technologies, such as additive manufacturing or 3D printing, has showed prospective results aimed at producing three-dimensional structures. Auxetic structures are fabricated by additive manufacturing, soft lithography, machining technology, compressed foaming, and textile fabrication using various biomaterials, including poly(ethylene glycol diacrylate), polyurethane, poly(lactic-glycolic acid), chitosan, hydroxyapatite, and using a hard material such as a silicon wafer. After fabricating the scaffold with an auxetic effect, researchers have cultured fibroblasts, osteoblasts, chondrocytes, myoblasts, and various stem cells, including mesenchymal stem cells, bone marrow stem cells, and embryonic stem cells. Additionally, they have shown new possibilities as scaffolds through tissue engineering by cell proliferation, migration, alignment, differentiation, and target tissue regeneration. In addition, auxetic structures and their unique deformation characteristics have been explored in several biomedical devices, including implants, stents, and surgical screws. Although still in the early stages, the auxetic structure, which can create mechanical properties tailored to natural tissue by changing the internal architecture of the structure, is expected to show an improved tissue reconstruction ability. In addition, continuous research at the cellular level using the auxetic micro and nano-environment could provide a breakthrough for tissue reconstruction.

2020 ◽  
Vol 7 (8) ◽  
pp. 2011-2027 ◽  
Author(s):  
Susmita Bose ◽  
Caitlin Koski ◽  
Ashley A. Vu

Through additive manufacturing (AM) of natural biopolymers, significant progress has been made in the field of biomedical devices and bone tissue engineering of low load bearing applications like maxillofacial, bone defects, and dental.


2020 ◽  
Author(s):  
Xiaotong Wu ◽  
Yuanyuan Jia ◽  
Shiyan Wang ◽  
Jiaqi Wang ◽  
Xiuli Sun ◽  
...  

Abstract Background Pelvic organ prolapse (POP) is a common debilitating condition affecting about 30–40% of women. The application of stem cells therapy and growth factor has greatly promoted the development of pelvic tissue engineering, which remains a promising approach, but there is no consensus on the therapeutic mechanism of stem cells and the application of growth factors. Stem cells were mainly used as seed cells to differentiate into target tissue cells, fuse with target tissue after transplantation and paracrine effect to play a therapeutic role in pelvic tissue engineering. However, whether stem cells can be differentiated into target tissue cells is still to be a question,in this regard, the contemporary trend is to investigated the effect of adipose-derived stem cells (ADSCs) as the seed cells of pelvic tissue engineering on the repair of POP and the underlying mechanisms.Methods In the present study,we evaluated the therapeutic potential of gene-modified ADSC that overexpress basic fibroblast growth factor(bFGF)and evaluated its effects on paracrine function and directional differentiation ability.Results The results showed that following ADSCs are designed to continuously release controllable levels of growth factors during the control period of repair, taking advantage of the paracrine function of stem cells to accelerate cell growth and extracellular matrix (ECM) reconstruction during the early stage of stem cell implantation, and then stem cells are differentiated into target tissues-fibroblasts to accelerate the reconstruction of pelvic floor tissues.Conclusions We suggest that the observed effects are determined by pleiotropic effects of bFGF, along with the multifactorial paracrine action of ADSC which remain viable and functionally active within the engineered cell construct.Thus, we demonstrated the high therapeutic potential of the utilized approach for pelvic tissue engineering.


2018 ◽  
Vol 9 (3) ◽  
pp. 50 ◽  
Author(s):  
Ludovica Parisi ◽  
Andrea Toffoli ◽  
Giulia Ghiacci ◽  
Guido Macaluso

Tissue engineering (TE) is a multidisciplinary science, which including principles from material science, biology and medicine aims to develop biological substitutes to restore damaged tissues and organs. A major challenge in TE is the choice of suitable biomaterial to fabricate a scaffold that mimics native extracellular matrix guiding resident stem cells to regenerate the functional tissue. Ideally, the biomaterial should be tailored in order that the final scaffold would be (i) biodegradable to be gradually replaced by regenerating new tissue, (ii) mechanically similar to the tissue to regenerate, (iii) porous to allow cell growth as nutrient, oxygen and waste transport and (iv) bioactive to promote cell adhesion and differentiation. With this perspective, this review discusses the options and challenges facing biomaterial selection when a scaffold has to be designed. We highlight the possibilities in the final mold the materials should assume and the most effective techniques for its fabrication depending on the target tissue, including the alternatives to ameliorate its bioactivity. Furthermore, particular attention has been given to the influence that all these aspects have on resident cells considering the frontiers of materiobiology. In addition, a focus on chitosan as a versatile biomaterial for TE scaffold fabrication has been done, highlighting its latest advances in the literature on bone, skin, cartilage and cornea TE.


Nano LIFE ◽  
2014 ◽  
Vol 04 (02) ◽  
pp. 1430001 ◽  
Author(s):  
Donglu Shi ◽  
Rigwed Tatu ◽  
Qing Liu ◽  
Hossein Hosseinkhani

The applications of stem cells in tissue engineering will show great promise in generating tailor-made tissue/organs for clinical applications. This paper gives a review on a broad spectrum of areas in stem cell-based tissue engineering including neuron repair, cardiac patches, skin regeneration, gene therapy and cartilage tissue engineering. This paper is intended to serve as an informative tutorial for scientists and physicians from fields other than stem cells and tissue engineering. It will shed light on various strategies of target tissue/organ repair involving stem cells.


Materials ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5303
Author(s):  
Anamaria Matichescu ◽  
Lavinia Cosmina Ardelean ◽  
Laura-Cristina Rusu ◽  
Dragos Craciun ◽  
Emanuel Adrian Bratu ◽  
...  

The reconstruction or repair of oral and maxillofacial functionalities and aesthetics is a priority for patients affected by tooth loss, congenital defects, trauma deformities, or various dental diseases. Therefore, in dental medicine, tissue reconstruction represents a major interest in oral and maxillofacial surgery, periodontics, orthodontics, endodontics, and even daily clinical practice. The current clinical approaches involve a vast array of techniques ranging from the traditional use of tissue grafts to the most innovative regenerative procedures, such as tissue engineering. In recent decades, a wide range of both artificial and natural biomaterials and scaffolds, genes, stem cells isolated from the mouth area (dental follicle, deciduous teeth, periodontal ligament, dental pulp, salivary glands, and adipose tissue), and various growth factors have been tested in tissue engineering approaches in dentistry, with many being proven successful. However, to fully eliminate the problems of traditional bone and tissue reconstruction in dentistry, continuous research is needed. Based on a recent literature review, this paper creates a picture of current innovative strategies applying dental stem cells for tissue regeneration in different dental fields and maxillofacial surgery, and offers detailed information regarding the available scientific data and practical applications.


2020 ◽  
Vol 13 (11) ◽  
pp. 344
Author(s):  
Caitlin Priester ◽  
Amber MacDonald ◽  
Madhu Dhar ◽  
Austin Bow

The field of regenerative medicine utilizes a wide array of technologies and techniques for repairing and restoring function to damaged tissues. Among these, stem cells offer one of the most potent and promising biological tools to facilitate such goals. Implementation of mesenchymal stem cells (MSCs), induced pluripotent stem cells (iPSCs), and embryonic stem cells (ESCs) offer varying advantages based on availability and efficacy in the target tissue. The focus of this review is to discuss characteristics of these three subset stem cell populations and examine their utility in tissue engineering. In particular, the development of therapeutics that utilize cell-based approaches, divided by germinal layer to further assess research targeting specific tissues of the mesoderm, ectoderm, and endoderm. The combinatorial application of MSCs, iPSCs, and ESCs with natural and synthetic scaffold technologies can enhance the reparative capacity and survival of implanted cells. Continued efforts to generate more standardized approaches for these cells may provide improved study-to-study variations on implementation, thereby increasing the clinical translatability of cell-based therapeutics. Coupling clinically translatable research with commercially oriented methods offers the potential to drastically advance medical treatments for multiple diseases and injuries, improving the quality of life for many individuals.


2013 ◽  
Vol 22 (03) ◽  
pp. 180-187 ◽  
Author(s):  
J. Henke ◽  
J. T. Schantz ◽  
D. W. Hutmacher

ZusammenfassungDie Behandlung ausgedehnter Knochen-defekte nach Traumata oder durch Tumoren stellt nach wie vor eine signifikante Heraus-forderung im klinischen Alltag dar. Aufgrund der bestehenden Limitationen aktueller Therapiestandards haben Knochen-Tissue-Engineering (TE)-Verfahren zunehmend an Bedeutung gewonnen. Die Entwicklung von Additive-Manufacturing (AM)-Verfahren hat dabei eine grundlegende Innovation ausgelöst: Durch AM lassen sich dreidimensionale Gerüstträger in einem computergestützten Schichtfür-Schicht-Verfahren aus digitalen 3D-Vorlagen erstellen. Wurden mittels AM zunächst nur Modelle zur haptischen Darstellung knöcherner Pathologika und zur Planung von Operationen hergestellt, so ist es mit der Entwicklung nun möglich, detaillierte Scaffoldstrukturen zur Tissue-Engineering-Anwendung im Knochen zu fabrizieren. Die umfassende Kontrolle der internen Scaffoldstruktur und der äußeren Scaffoldmaße erlaubt eine Custom-made-Anwendung mit auf den individuellen Knochendefekt und die entsprechenden (mechanischen etc.) Anforderungen abgestimmten Konstrukten. Ein zukünftiges Feld ist das automatisierte ultrastrukturelle Design von TE-Konstrukten aus Scaffold-Biomaterialien in Kombination mit lebenden Zellen und biologisch aktiven Wachstumsfaktoren zur Nachbildung natürlicher (knöcherner) Organstrukturen.


Sign in / Sign up

Export Citation Format

Share Document