scholarly journals Hemodynamics Challenges for the Navigation of Medical Microbots for the Treatment of CVDs

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7402
Author(s):  
Erica Doutel ◽  
Francisco J. Galindo-Rosales ◽  
Laura Campo-Deaño

Microbots have been considered powerful tools in minimally invasive medicine. In the last few years, the topic has been highly studied by researchers across the globe to further develop the capabilities of microbots in medicine. One of many applications of these devices is performing surgical procedures inside the human circulatory system. It is expected that these microdevices traveling along the microvascular system can remove clots, deliver drugs, or even look for specific cells or regions to diagnose and treat. Although many studies have been published about this subject, the experimental influence of microbot morphology in hemodynamics of specific sites of the human circulatory system is yet to be explored. There are numerical studies already considering some of human physiological conditions, however, experimental validation is vital and demands further investigations. The roles of specific hemodynamic variables, the non-Newtonian behavior of blood and its particulate nature at small scales, the flow disturbances caused by the heart cycle, and the anatomy of certain arteries (i.e., bifurcations and tortuosity of vessels of some regions) in the determination of the dynamic performance of microbots are of paramount importance. This paper presents a critical analysis of the state-of-the-art literature related to pulsatile blood flow around microbots.

2011 ◽  
Author(s):  
M. A. Green ◽  
C. R. Kaplan ◽  
J. P. Boris ◽  
E. S. Oran

Author(s):  
R. C. SEAMANS ◽  
B. P. BLASINGAME ◽  
G. C. CLEMENTSON

2015 ◽  
Vol 12 (3) ◽  
pp. 303-320
Author(s):  
Miloje Kostic

On the basis of the known fact that all air gap main flux density variations are enclosed by permeance slot harmonics, only one component of stray losses in rotor (stator) iron is considered in the new classification, instead of 2 components: rotor (stator) pulsation iron losses, and rotor (stator) surface iron losses. No-load rotor cage (high-frequency) stray losses are usually calculated. No-load stray losses are caused by the existence of space harmonics: the air-gap slot permeance harmonics and the harmonics produced by no-load MMF harmonics. The second result is the proof that the corresponding components of stray losses can be calculated separately for the mentioned kind of harmonics. Determination of the depth of flux penetration and calculations of high frequency iron losses are improved. On the basis of experimental validation, it is proved that the new classification of no-load stray losses and the proposed method for the calculation of the total value is sufficiently accurate.


2021 ◽  
pp. 92-97
Author(s):  
K.V. Korytchenko ◽  
I.S. Varshamova ◽  
D.V. Meshkov ◽  
D.P. Dubinin ◽  
R.I. Kovalenko ◽  
...  

A study of the influence of the discharge gap length and the initial gas pressure on the energy deposition into the discharge channel was done. The study was conducted at the same total discharge energy. It is experimentally shown that the connection of the voltage probe to the discharge circuit significantly affects the discharge current. The determination of the energy deposited into the spark channel is based on the results of numerical simulation of the spark channel development. Experimentally measured discharge currents at different pressures and the gap length were used as initial data for the calculation. Based on the obtained results, it is determined which of the factors (the initial pressure or the gap length) has the strongest influence on the energy input into the spark channel.


2015 ◽  
Vol 16 (1) ◽  
Author(s):  
Frank Feyerabend ◽  
Martin Johannisson ◽  
Zhidan Liu ◽  
Regine Willumeit-Römer

AbstractSterilization is a necessary step for all implant materials. Different methods can influence the materials properties. Especially important for magnesium as degradable materials is the determination of the corrosion properties. In this study the influence of 70% ethanol, glutaraldehyde, autoclaving, dry heat, UV-, gamma- and electron beam-irradiation on mechanical and corrosion parameters were analyzed. As mechanical parameters hardness and grain size were determined. The corrosion rate under physiological conditions, weight of the corrosion layer and corrosion morphology was determined. It could be demonstrated that irradiation treatments and 70% ethanol are suitable methods, as they decrease the corrosion rate. Heat-introducing methods (autoclaving and dry heat) acted as incomplete ageing treatments on this alloy and therefore increased the corrosion rate. Furthermore, osmolality showed a better correlation to the actual corrosion rate than the pH. Therefore an optimum ratio between alloying system, implant and sterilization method has to be established, depending on the intended application.


Sign in / Sign up

Export Citation Format

Share Document