scholarly journals Low-Carbon and Fundamental Properties of Eco-Efficient Mortar with Recycled Powders

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7503
Author(s):  
Chang Sun ◽  
Lulu Chen ◽  
Jianzhuang Xiao ◽  
Qiong Liu ◽  
Junqing Zuo

Using recycled powders from solid waste is accepted as an effective strategy to realize the sustainable development of the construction industry. In our study, the cement was substituted by two kinds of recycled powders, i.e., spontaneous combustion gangue powder (SCGP) and recycled concrete powder (RCP), with a certain replacement ratio of 30%. The experimental variables were mainly the type of replacement powder (e.g., SCGP, RCP, and SCGP + RCP) and the grinding time of RCP (e.g., 25 min, 50 min, and 75 min). The fundamental properties, including mechanical properties, long-term properties, and carbon emission, were analyzed for all the mortar mixtures. Experimental results indicate that incorporation of RCP contributes to enhancing the toughness and dry shrinkage resistance of eco-efficient mortar, while SCGP positively affects the compressive strength and chloride resistance. The grinding process improves the activity of RCP to a certain extent, while a long grinding time leads to fusion and aggregation between powders. Investigation on CO2 emission demonstrates that carbon emission from cement production accounts for the largest proportion, 80~95%, in the total emission from mortar production. Combined with the AHP model, eco-efficient mortar containing 15% RCP ground for 50 min and 15% SCGP displays optimal fundamental properties.

2021 ◽  
Author(s):  
He Zhang ◽  
Jianxun Zhang ◽  
Rui Wang ◽  
Yazhe Huang ◽  
Mengxiao Zhang ◽  
...  

AbstractWith the rapid development of the Internet of Things (IoT) in the 5G age, the construction of smart cities around the world consequents on the exploration of carbon reduction path based on IoT technology is an important direction for global low carbon city research. Carbon dioxide emissions in small cities are usually higher than that in large and medium cities. However, due to the huge difference in data environment between small cities and Medium-large sized cities, the weak hardware foundation of the IoT, and the high input cost, the construction of a small city smart carbon monitoring platform has not yet been carried out. This paper proposes a real-time estimate model of carbon emissions at the block and street scale and designs a smart carbon monitoring platform that combines traditional carbon control methods with IoT technology. It can exist long-term data by using real-time data acquired with the sensing device. Therefore, the dynamic monitoring and management of low-carbon development in small cities can be achieved. The contributions are summarized as follows: (1) Intelligent thermoelectric systems, industrial energy monitoring systems, and intelligent transportation systems are three core systems of the monitoring platform. Carbon emission measurement methods based on sample monitoring, long-term data, and real-time data have been established, they can solve the problem of the high cost of IoT equipment in small cities. (2) Combined with long-term data, the real-time correction technology, they can dispose of the matter of differences in carbon emission measurement under diverse scales.


2021 ◽  
Vol 13 (23) ◽  
pp. 13200
Author(s):  
Yang Yu ◽  
Peihan Wang ◽  
Zexin Yu ◽  
Gongbing Yue ◽  
Liang Wang ◽  
...  

Shrinkage property is a significant indicator of the durability of concrete, and the shrinkage of green recycled concrete is particularly problematic. In this paper, construction waste was crushed and screened to generate simple-crushed recycled coarse aggregate (SCRCA). The SCRCA was then subjected to particle shaping to create primary particle-shaped recycled coarse aggregate (PPRCA). On this basis, the PPRCA was particle-shaped again to obtain the secondary particle-shaped recycled coarse aggregate (SPRCA). Under conditions where the dosage of cementitious material is 300 kg/m3 and the sand rate is 38%, a new high-belite sulphoaluminate cement (HBSAC) with low carbon emission and superior efficiency was used as the basic cementitious material. Taking the quality of recycled coarse aggregate (SCRCA, PPRCA, and SPRCA) and the replacement ratio (25%, 50%, 75%, and 100%) as the influencing factors to prepare the green recycled concrete, the workability and shrinkage property of the prepared concrete were analyzed. The results show that the water consumption of green recycled concrete decreases as the quality of the recycled coarse aggregate (RCA) increases and the replacement ratio decreases, provided that the green recycled concrete achieves the same workability. With the improvement of RCA quality and the decrease of replacement ratio, the shrinkage of recycled concrete decreases. The shrinkage performance of green recycled concrete configured with the SPRCA completely replacing the natural coarse aggregate (NCA) is basically the same as that of the natural aggregate concrete (NAC).


2020 ◽  
Vol 12 (19) ◽  
pp. 8118
Author(s):  
Tu Peng ◽  
Xu Yang ◽  
Zi Xu ◽  
Yu Liang

The sustainable development of mankind is a matter of concern to the whole world. Environmental pollution and haze diffusion have greatly affected the sustainable development of mankind. According to previous research, vehicle exhaust emissions are an important source of environmental pollution and haze diffusion. The sharp increase in the number of cars has also made the supply of energy increasingly tight. In this paper, we have explored the use of intelligent navigation technology based on data analysis to reduce the overall carbon emissions of vehicles on road networks. We have implemented a traffic flow prediction method using a genetic algorithm and particle-swarm-optimization-enhanced support vector regression, constructed a model for predicting vehicle exhaust emissions based on predicted road conditions and vehicle fuel consumption, and built our low-carbon-emission-oriented navigation algorithm based on a spatially optimized dynamic path planning algorithm. The results show that our method could help to significantly reduce the overall carbon emissions of vehicles on the road network, which means that our method could contribute to the construction of low-carbon-emission intelligent transportation systems and smart cities.


2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Wenjuan Yang ◽  
Rongqin Zhao ◽  
Xiaowei Chuai ◽  
Liangang Xiao ◽  
Lianhai Cao ◽  
...  

AbstractClimate change has emerged as one of the most important environmental issues worldwide. As the world’s biggest developing country, China is participating in combating climate change by promoting a low carbon economy within the context of global warming. This paper summarizes the pathways of China’s low carbon economy including the aspects of energy, industry, low carbon cities, circular economy and low carbon technology, afforestation and carbon sink, the carbon emission trading market and carbon emission reduction targets. There are many achievements in the implementation of low carbon policies. For example, carbon emission intensity has been reduced drastically along with the optimizing of energy and industry structure and a nationwide carbon trading market for electricity industry has been established. However, some problems remain, such as the weakness of public participation, the ineffectiveness of unified policies for certain regions and the absence of long-term planning for low carbon cities development. Therefore, we propose some policy recommendations for the future low carbon economy development in China. Firstly, comprehensive and long-term planning should be involved in all the low carbon economy pathways. Secondly, to coordinate the relationship between central and local governments and narrow the gap between poor and rich regions, different strategies of carbon emission performance assessment should be applied for different regions. Thirdly, enterprises should cooperate with scientific research institutions to explored low carbon technologies. Finally, relevant institutions should be regulated to realize comprehensive low carbon transition through reasonable and feasible low carbon pathways in China. These policy recommendations will provide new perspectives for China’s future low carbon economy development and guide practices for combating climate change.


2020 ◽  

<p>The long-term forecasting of the energy demand is an important issue of an area’s sustainable development, especially for mega cities such as Beijing. Beijing is changing its energy supply strategy to depend on energy imports from other provinces due to the city’s long-term low carbon sustainable development plan. Beijing has promised that it will reach the peak value of energy consumption by 2050 and the peak value of the carbon emissions by 2030. To understand whether this can be achieved, this study built an energy demand simulation model using the LEAP with different development scenarios. The results show that, the peak value of Beijing’s energy demand is between 108.25 and 131.74 Mtce during the period of 2044 to 2048, while the peak value of carbon emissions is between 134 and 139.38 million tons in 2025. We also find that adjusting the industry structure and improving the tertiary industry’s energy usage efficiency can be efficient ways to reduce energy consumption. These approaches not only reduce the negative influence of the economic development, but also achieve the energy saving and carbon emission reducing requirements. This study provides an interpretation of the implications for the future energy and climate policies of Beijing.</p>


2012 ◽  
Vol 518-523 ◽  
pp. 2243-2246 ◽  
Author(s):  
Zhuo Ma ◽  
Yong Xuan Wang ◽  
Hai Yan Duan ◽  
Xian En Wang ◽  
De Ming Dong

With the continuous development of the economic economy, the demands for automobiles in Jilin province increase constantly. The carbon emission control of transportation department will become one of the key fields for greenhouse gas control in Jilin province. This paper employs the LEAP Model, through setting Baseline scenario and Low-carbon scenario, to imitate the long-term energy demand and carbon emission of urban passenger transport in Jilin province. Then after the comparative analysis, this paper investigates the major impact elements and feasible paths for Jilin’s transportation industry carbon emission.


2012 ◽  
Vol 598 ◽  
pp. 635-639
Author(s):  
Zhao Hua Du ◽  
Jie Wang

In this paper, the mixture ratio of recycled concrete and its fundamental mechanics properties have been researched by experiments, which include the mechanical properties of recycled aggregate, the optimum mix design of the recycled concrete, compressive strength tests on concrete specimens using the broken abandoned concrete rubbles as recycled coarse aggregate, the replacement ratios of recycled coarse aggregate by mass to the natural coarse aggregate are 0, 0.3, 0.5, 0.70 and 1.0 respectively. The influences of the replacement ratio of recycled coarse aggregate by mass to the fundamental properties of the recycled concrete such as the compressive strength,and the elastic modulus are discussed and analyzed.and the optimum replacement ratio of recycled coarse aggregate by mass is suggested. These may be references to the applications of recycled concrete in engineering.


2018 ◽  
Vol 10 (11) ◽  
pp. 4244
Author(s):  
Yong Bian ◽  
Zhi Yu ◽  
Xuelan Zeng ◽  
Jingchun Feng ◽  
Chao He

As China is the largest greenhouse gas emitter and has the characteristics of significant regional disparity, the issue of regional low-carbon development strategy is of vital importance for the achievement of the country’s long-term emission targets. This work focused on China’s long-term carbon emission abatement from the perspective of regional disparity. We firstly analyzed the national emission trajectories consistent with the current Intended Nationally Determined Contributions (INDCs), 2 °C, and 1.5 °C goals in two economic growth pathways by 2050 using a linear programming model, then classified the provinces into three categories, and compared results of different scenarios of regional disparity patterns, economic growth rates, and emission targets. Results showed that different regional patterns led to different required carbon reduction targets for all categories, and the regional emission reduction measures had to be stronger in a higher growth rate or a more stringent emission target, especially for the developed areas. A scheme of regionally coordinated low-carbon development was then recommended for the formulation of long-term regional emission targets, and carbon reduction strategies for categories were proposed in terms of energy mix optimization, industrial transformation, and technology innovation, which is of great policy implication for China in regional development and national emission targets enhancement.


2021 ◽  
Vol 241 ◽  
pp. 02003
Author(s):  
Jun Wang ◽  
Hua Zhao

With the further aggravation of global warming and the increasingly serious problems of ecological environment, the construction of low-carbon cities has become an inevitable choice for the global response to climate change and the sustainable development of economy and society. In order to understand the basic situation of China’s low-carbon cities more specifically, this paper selects countries with different urbanization rates to carry out benchmarking analysis with China, hoping to draw on the experience of other countries from the national level through multi-dimensional comparison, and guide the direction of China’s future urban development. Firstly, this paper selects the basic indicators such as the total amount of carbon dioxide emissions, per capita carbon emissions and carbon emissions per unit GDP of each country; Secondly, it compares the proportion of coal in energy and other indicators, and analyzes the energy structure of each country in depth; Thirdly, it compares the trend of carbon emissions in each country among 1990-2017. Finally, in order to reflect the carbon emission in the development of urbanization, this paper uses the “urbanization carbon emission index”, which is the ratio of per capita carbon emission and urbanization rate, to show the relationship between the degree of urbanization and carbon emission. Through benchmarking analysis, we can more clearly understand the overall trend of low-carbon city construction in different countries, recognize the gap between China and other countries, and better guide the development of low-carbon cities in China in the future.


2020 ◽  
pp. 51-74
Author(s):  
I. A. Bashmakov

The article presents the key results of scenario projections that underpinned the Strategy for long-term low carbon economic development of the Russian Federation to 2050, including analysis of potential Russia’s GHG emission mitigation commitments to 2050 and assessment of relevant costs, benefits, and implications for Russia’s GDP. Low carbon transformation of the Russian economy is presented as a potential driver for economic growth that offers trillions-of-dollars-worth market niches for low carbon products by mid-21st century. Transition to low carbon economic growth is irreversible. Lagging behind in this technological race entails a security risk and technological backwardness hazards.


Sign in / Sign up

Export Citation Format

Share Document