scholarly journals Pin Angle Thermal Effects on Friction Stir Welding of AA5058 Aluminum Alloy: CFD Simulation and Experimental Validation

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7565
Author(s):  
Supat Chupradit ◽  
Dmitry Olegovich Bokov ◽  
Wanich Suksatan ◽  
Michał Landowski ◽  
Dariusz Fydrych ◽  
...  

The friction stir welding (FSW) of tool pin geometry plays a critical role in the final properties of the produced joint. The tool pin geometry directly affects the generation of heat and the flow of internal materials during the FSW process. The effects of the FSW tool pin angle on heat generation and internal flow have not been quantitatively investigated in detail. In this manuscript, a validated Computational Fluid Dynamic (CFD) model was implemented to analyze the effects of pin angle on the thermo-mechanical action during the FSW process of AA5058 Al-Mg alloy. Experimental test results validate the thermal outcomes of the used model. The obtained results revealed that, when the pin angle is increased, the heat generation decreases while the mechanical action of the tool increases. The internal heat distribution at a higher pin angle is symmetrical. The higher mechanical action of the tool decreases the viscosity of the internal materials and increases stirring action (materials flow) around the pin. Furthermore, plastic flow near the tool increased stirring action and formed a larger stir zone in the joint area.

2016 ◽  
Vol 20 (1) ◽  
pp. 247-254
Author(s):  
Darko Veljic ◽  
Bojan Medjo ◽  
Marko Rakin ◽  
Zoran Radosavljevic ◽  
Nikola Bajic

Temperature, plastic strain and heat generation during the plunge stage of the friction stir welding (FSW) of high-strength aluminium alloys 2024 T3 and 2024 T351 are considered in this work. The plunging of the tool into the material is done at different rotating speeds. A three-dimensional finite element (FE) model for thermomechanical simulation is developed. It is based on arbitrary Lagrangian-Eulerian formulation, and Johnson-Cook material law is used for modelling of material behaviour. From comparison of the numerical results for alloys 2024 T3 and 2024 T351, it can be seen that the former has more intensive heat generation from the plastic deformation, due to its higher strength. Friction heat generation is only slightly different for the two alloys. Therefore, temperatures in the working plate are higher in the alloy 2024 T3 for the same parameters of the plunge stage. Equivalent plastic strain is higher for 2024 T351 alloy, and the highest values are determined under the tool shoulder and around the tool pin. For the alloy 2024 T3, equivalent plastic strain is the highest in the influence zone of the tool pin.


2013 ◽  
Vol 554-557 ◽  
pp. 1022-1030 ◽  
Author(s):  
Pierpaolo Carlone ◽  
Gaetano S. Palazzo

In recent years, remarkable interest has been focused on the Friction Stir Welding (FSW) process, by academic as well as industrial research groups. Conceptually, the FSW process is quite simple: a non-consumable rotating tool is plunged between the adjoining edges of the parts to be welded and moved along the desired weld line. Frictional and viscous heat generation increases the work piece temperature, softening the processing material and forcing it to flow around the pin. Although FSW has been effectively applied in welding of several materials, such as copper, steel, magnesium, and titanium, considerable attention is still focused on aluminum welding, in particular for transport applications. Recent literature clearly evidenced microstructural variations in the stir zone, imputable to continuous dynamic recrystallization phenomena, leading to the formation of a finer equiaxed grains. Moreover, depending on the specific alloy, thermal cycles can induce coarsening or dissolution of precipitates in the thermo-mechanically affected zone (TMAZ) and in the heat affected zone (HAZ). The influence of the aforementioned microstructural aspects on mechanical properties and formability of FSWed assemblies is also well recognized. The aim of this paper is to numerically and experimentally investigate the influence of process parameters, namely rotating speed and welding speed, on microstructural aspects in AA2024-T3 friction stir butt welds. A three-dimensional Computational Fluid Dynamic (CFD) model has been implemented to simulate the process. A viscoplastic material model, based on Wright and Sheppard modification of the constitutive model initially proposed by Sellars and Tegart has been implemented in the commercial package ANSYS CFX, considering an Eulerian framework. Tool-workpiece interaction has been modeled assuming partial sticking/sliding condition, and incorporating both frictional and viscous contributions to the heat generation. Microstructural aspects have been numerically predicted using the Zenner-Holloman parameter and experimentally measured by means of conventional metallographic techniques. Satisfactory agreement has been found between simulated and experimental results. The influence of process parameters on mechanical properties has also been highlighted.


2021 ◽  
Vol 49 (1) ◽  
pp. 78-86
Author(s):  
Stephen Leon ◽  
G. Bharathiraja ◽  
V. Jayakumar

In friction stir welding, lesser tool life restricts the usage of non-circular pin in friction stir welding tool eventhough it delivers comparatively better weld joints than circular pin. Process peak temperature during the process affects the shear strength of the flowing material around the tool pin. Maintaining the process peak temperature as low as possible improves the properties in heat affected zone but on the other hand it increases the stress on the tool pin.Especially on the usage of non-circular pin, the pin surface experiences uneven stress distribution and causes premature tool failure. In this paper, optimum thermal environment through proper selection of process parameters and dwell period with respect to the pin geometry are analysed. A comparative analysis is also made to understand the impact of increase in flat surfaces in the pin surface on weld quality in the view of developing a suitable thermal environment that can improve tool life without compromising joint strength. Apart from this, optimum dwell period for the chosen tool pin geometry is analysed based on the empirical softening temperature of the material.


Author(s):  
Akshansh Mishra ◽  
Adarsh Tiwari ◽  
Mayank Kumar Shukla ◽  
A. Razal Rose

A relatively new joining process, friction stir welding (FSW) produces no fumes; uses no filler material; and can join aluminium alloys, copper, magnesium, zinc, steels, and titanium. FSW sometimes produces a weld that is stronger than the base material. The tool geometry plays a critical role in material flow and governs the transverse rate at which FSW can be conducted. The tool serves three primary functions, i.e., (a) heating of the work piece, (b) movement of material to produce the joint, and (c) containment of the hot metal beneath the tool shoulder. Heating is created within the work piece by friction between both the rotating tool pin and shoulder and by severe plastic deformation of the work.


2016 ◽  
Vol 20 (5) ◽  
pp. 1693-1701
Author(s):  
Alin Murariu ◽  
Darko Veljic ◽  
Dragana Barjaktarevic ◽  
Marko Rakin ◽  
Nenad Radovic ◽  
...  

The heat generated during friction stir welding (FSW) process depends on plastic deformation of the material and friction between the tool and the material. In this work, heat generation is analysed with respect to the material velocity around the tool in Al alloy Al2024-T351 plate. The slip rate of the tool relative to the workpiece material is related to the frictional heat generated. The material velocity, on the other hand, is related to the heat generated by plastic deformation. During the welding process, the slippage is the most pronounced on the front part of the tool shoulder. Also, it is higher on the retreating side than on the advancing side. Slip rate in the zone around the tool pin has very low values, almost negligible. In this zone, the heat generation from friction is very low, because the material is in paste-like state and subjected to intensive plastic deformation. The material flow velocity around the pin is higher in the zone around the root of the pin. In the radial direction, this quantity increases from the pin to the periphery of the tool shoulder.


2021 ◽  
Vol 22 (2) ◽  
pp. 352-363
Author(s):  
Stephen Leon Joseph Leon ◽  
Alfred Franklin Varghese ◽  
Joseph Michel ◽  
Gopinath Gunasekaran

Frictional heat generation in the tool/matrix interface followed by the stirring of material along the weld line causes plasticized solid state joining in friction stir welding. In this paper, the existing torque based thermo-mechanical model for the tools with cylindrical pins is remodified for the polygonal tool pin profile by introducing novel multiplication factors with respect to the number of sides in the tool pin geometry. The variation in the effective heat supply with respect to the chosen pin geometry was analyzed. A comparative analysis of the proposed analytical model with the existing model was also carried out to understand the accuracy of the proposed model.  Furthermore, a transient thermal numerical modelling was carried out in the view of understanding the change in process peak temperature in the stir zone and change in temperature gradient along the heat affected zone with respect to the change in pin geometry for the opted set of process input parameters. An analytically estimated heat-input-based numerical model was adopted in the present study. It was observed that the process peak temperature was directly proportional to the number of sides in the tool pin. ABSTRAK: Penjanaan haba geseran antara muka pada alat/matrik diikuti dengan pengacauan material sepanjang garis kimpalan menyebabkan keadaan plastik pepejal melekat bersama geseran kimpalan pengacau. Kajian ini berkaitan tork sedia ada berdasarkan model mekanikal-terma bagi alat pin silinder yang terubah suai bagi profil pin alat poligon dengan memperkenalkan faktor gandaan berdasarkan bilangan sisi geometri alat pin. Perubahan pada bekalan haba efektif berdasarkan geometri pin pilihan telah dikaji. Analisis bandingan pada model analitik yang dicadang bersama model sedia ada, telah dilakukan bagi memahami ketepatan model cadangan. Tambahan, model transien numerikal terma telah dibuat bagi memahami proses perubahan suhu puncak ketika zon pengacauan dan perubahan gradien suhu sepanjang zon terkena haba perubahan geometri pin pada set proses parameter input terpilih. Kajian ini mengaplikasi model numerik berdasarkan input anggaran haba secara analitik. Dapatan kajian menunjukkan suhu puncak proses adalah berkadar langsung dengan bilangan sisi pin alat.


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 438
Author(s):  
Mohamed M. Z. Ahmed ◽  
Mohamed I. A. Habba ◽  
Nabil Jouini ◽  
Bandar Alzahrani ◽  
Mohamed M. El-Sayed Seleman ◽  
...  

In this work, three mathematical models for the heat generation during bobbin tool friction stir welding (BT-FSW) of aluminum using three tool pin geometries have been proposed. The models have utilized and updated the available models for the heat generation during the conventional tool friction stir welding (CT-FSW). For the validation of the models, BT-FSW experiments have been carried out for aluminum alloy AA1050 using three different pin geometries (cylindrical, square, and triangular), at different welding speeds of 200, 400, 600, 800, and 1000 mm/min and a constant tool rotation speed of 600 rpm. The welding temperatures during BT-FSW have been measured to be compared with that calculated from the models at the same parameters. It has been found that the calculated welding temperatures from the models and that measured during BT-FSW are in good agreement at all the investigated welding speeds especially in case of the square and cylindrical pins, proving the validity of the developed models for the predication of the heat generation as well as the welding temperatures. This will allow proper designing of the BT-FSW parameters and avoiding the conditions that can deteriorate the joint quality and properties.


Sign in / Sign up

Export Citation Format

Share Document