Effect of the Type of Grinding Wheel on the Surface Characteristics of a Titanium Alloy with Internal Coolant Supply

2019 ◽  
Vol 825 ◽  
pp. 92-98
Author(s):  
Nakatsuka Nagatoshi ◽  
Sumito Toyokawa ◽  
Atsushi Kusakabe ◽  
Shinya Nakatsukasa ◽  
Hiroyuki Sasahara

The objective of this paper is to clarify the effect of grinding surface characteristics in the grinding of a titanium alloy with a coolant supply from the inner side of the grinding wheel. In this paper, we selected a white aluminum oxide (WA) vitrified bonded grinding wheel and a green silicon carbide (GC) vitrified bonded grinding wheel, and compared their grinding characteristics. As a result, in the case of the GC vitrified bonded grinding wheel, the surface roughness decreased by about 54% and the compressive residual stress increased by about 128%.

Author(s):  
James D. Campbell

The objective of this paper was to compare the creep feed superabrasive machining of an alpha-beta structural titanium alloy, using a water-soluble and a straight oil grinding fluid, in terms of residual stress, specific energy, power flux and microstructure. The statistical effect of process variables on these criteria was investigated using a Taguchi screening design of experiment. Grinding wheel peripheral velocity, abrasive size and fluid type were the most important factors contributing to compressive residual stress. After the depth of cut, fluid type contributed the most variation to specific energy and power flux. Both fluids produced testpieces that were microstructurally sound, and were essentially stress free or had favorable compressive residual stress.


2019 ◽  
Vol 825 ◽  
pp. 84-91
Author(s):  
Sumito Toyokawa ◽  
Nakatsuka Nagatoshi ◽  
Atsushi Kusakabe ◽  
Hiroyuki Sasahara

The objective of this paper is to clarify the effect of the difference of grinding fluid supply method on grinding surface characteristics during the curved surface machining of titanium alloy. The convex and concave type workpieces were machined by internal coolant supply and external coolant supply, and the surface characteristics were compared. The internal coolant supply could supply the grinding fluid directly to the machining point through the grinding wheel pores. One nozzle or seven nozzles were used for external coolant supply. As a result, the surface roughness of the concave surface decreased by about 10 % compared with the one nozzle was used when the grinding fluid was supplied from the inner side of the grinding wheel. In the case of the convex surface, the surface roughness decreased about 20 % compared with the single nozzle was used, and it decreased about 9 % compared with the seven nozzles were used.


2013 ◽  
Vol 631-632 ◽  
pp. 660-665 ◽  
Author(s):  
Yao Wang ◽  
Zha Yan Feng

In order to enhance the efficiency and the surface smooth degree of the RBSiC grinding, a three factors two levels full factorial design was utilized to optimize the process. Combined with the effects of grinding parameters on surface roughness, the grit cut depth analysis was employed to choose the appropriate grinding parameters. The strength reliability and the residual stresses of the RBSiC ground using the optimized parameters were investigated. The results show that comparing to the polished RBSiC the ground ones have higher compressive residual stress, lower crack scatter and similar average bending strength.


Metals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 830
Author(s):  
Xiaodi Wang ◽  
Liqin Chen ◽  
Peng Liu ◽  
Guobiao Lin ◽  
Xuechong Ren

Fatigue property is a key evaluation index for the service reliability of railway axle. In this work, the effect of ultrasonic surface rolling processing (USRP) on the surface characteristic and fatigue property was investigated in an EA4T axle steel used on high speed trains by several characterization techniques and the staircase method fatigue testing. The surface characteristics were initially studied in EA4T axle steel under different static loads of 1.0 kN, 1.5 kN and 2.0 kN, and served as the important USRP parameter. It was found that the larger static load greatly improved the surface microstructure, microhardness and compressive residual stress, but also increased the surface roughness. Furthermore, the rotating bending fatigue endurance limit of the USRP specimen with a static load of 1.5 kN was obviously enhanced by ~14% (from ~352 MPa to ~401 MPa) relative to the untreated specimen. The enhanced fatigue limit induced by USRP was attributed to the synergistic effect of the grain refinement, as evidenced by transmission electron microscope (TEM) observation, work-hardening, the increased compressive residual stress and the reduced surface roughness. Moreover, the fatigue limit of the USRP specimen was ~4% higher than that of the rolling specimen with turning off the ultrasonic system, ~386 MPa, which showed that the role of the ultrasonic impact could enhance the fatigue property. These findings demonstrate the validity of this technique in modifying the surface characteristics and thus improving the fatigue resistance of axle material, further ensuring its service safety and reliability.


2021 ◽  
Vol 11 (9) ◽  
pp. 4128
Author(s):  
Peng-Zhan Liu ◽  
Wen-Jun Zou ◽  
Jin Peng ◽  
Xu-Dong Song ◽  
Fu-Ren Xiao

Passive grinding is a new rail grinding strategy. In this work, the influence of grinding pressure on the removal behaviors of rail material in passive grinding was investigated by using a self-designed passive grinding simulator. Meanwhile, the surface morphology of the rail and grinding wheel were observed, and the grinding force and temperature were measured during the experiment. Results show that the increase of grinding pressure leads to the rise of rail removal rate, i.e., grinding efficiency, surface roughness, residual stress, grinding force and grinding temperature. Inversely, the enhancement of grinding pressure and grinding force will reduce the grinding ratio, which indicates that service life of grinding wheel decreases. The debris presents dissimilar morphology under different grinding pressure, which reflects the distinction in grinding process. Therefore, for rail passive grinding, the appropriate grinding pressure should be selected to balance the grinding quality and the use of grinding wheel.


Author(s):  
Yun Huang ◽  
Shaochuan Li ◽  
Guijian Xiao ◽  
Benqiang Chen ◽  
Yi He ◽  
...  

Abstract As the core component of aero-engine, the service performance of aero-engine blade has an important influence on the engine’s reliability and safety performance. Existing studies have shown that machined surface characteristics affect the fatigue strength of components. However, current studies are all based on regular fatigue samples. The structure of blades different from fatigue samples, and the influence mechanism of structural differences on the service performance of blades is still unclear. In addition, the conventional fatigue test conditions are not representative for the blades’ actual service conditions, so it is difficult to realize the processing process for the service performance optimization. In this study, the aero-engine blades processed by abrasive belt grinding and the vibration fatigue test bench were used to explore the influence of surface roughness, surface texture, and surface residual stress on the fatigue performance of aero-engine blades under actual working conditions. The aero-engine blades were ground with different process parameters to obtain different single-factor surface characteristics. By comparing the vibration fatigue life of blades with different surface features, the influence degree of each surface feature on the fatigue life was explored. Results showed that surface roughness has the greatest influence on fatigue strength, followed by residual stress, and surface texture has the least influence on fatigue strength.


2010 ◽  
Vol 654-656 ◽  
pp. 374-377
Author(s):  
Yasunori Harada ◽  
Koji Yoshida

Shot peening is a surface treatment that improves the performance of engineering components. In conventional shot peening, the medium consists of small spheres, which are usually made of high-carbon cast steel; the diameter of the spheres is in the range from 0.3 to 1.2mm. More recently, however, a new type of microshot has been developed to enhance the peening effect. The diameter of the spheres in the new medium is in the range from 0.02 to 0.15mm. In the present study, the effect of microshot peening on the surface characteristics of spring steel was investigated. The injection method of the microshot was of the compressed air type. The microshots of 0.1mm diameter were high-carbon cast steel and cemented carbide, and the workpiece used was the commercially spring steel JIS-SUP10. The surface roughness, hardness and compressive residual stress of the peened workpieces were measured. The surface layer of the workpieces was sufficiently deformed by microshot peening. A high hardness or residual stress was observed near the surface. The use of hard microshots such as cemented carbide was found to cause a significantly enhanced peening effect for spring steel.


2006 ◽  
Vol 326-328 ◽  
pp. 1093-1096 ◽  
Author(s):  
Won Jo Park ◽  
Sun Chul Huh ◽  
Sung Ho Park

Small steel ball is utilized in Shot peening process. Called “shot ball” are shot in high speed on the surface of metal. When the shot ball hit the surface, it makes plastic deformation and bounce off, that increase the fatigue life by compressive residual stress on surface. In this study, the results of observation on the tensile strength, hardness, surface roughness, compressive residual stress and fatigue life of a shot peened Al6061-T651 were obtained. Experimental results show that arc height increase tremendously by shot velocity. Also, it shows that surface roughness, hardness, compressive residual stress and fatigue life increase as shot velocity increase.


2017 ◽  
Vol 2017 (0) ◽  
pp. S1310204
Author(s):  
Sumito TOYOKAWA ◽  
Nagatoshi NAKATSUKA ◽  
Atsushi KUSAKABE ◽  
Hiroyuki SASAHARA

2020 ◽  
Vol 70 (4) ◽  
pp. 454-460
Author(s):  
K. Krishnakumar ◽  
A. Arockia Selvakumar

This research paper describes a technique for the enhancement of the fatigue strength of the chain link plate in the drive system of a military armoured vehicle. SAE 1541 steel link plates of chains were subjected to cyclical tensile stress due to repeated loading and un-loading conditions. The crack was getting originated from the pitch hole and growth perpendicular to the chain pulling load, due to fatigue mechanism. In general plate holes are manufactured using the conventional process. An additional novel technique called the slip ball burnishing (SBB) method is applied for improving the hole properties. The improvement is made by producing local plastic deformation, improving surface finish and compressive residual stress throughout in the pierced hole. Both the conventional process (CP) and the SBB technique have been evaluated by optical, profile, surface roughness and micro harness tests. Experimental fatigue test validations were done in both chain samples using the Johnson-Goodman method. SBB chains passed 3x106 cycles at the load of 17.61 kN and CP chains passed 3x106 cycles at the load of 13.92 kN. The conclusion was that SBB made a significant improvement of 26.51 per cent of fatigue strength compared to CP.


Sign in / Sign up

Export Citation Format

Share Document