scholarly journals Implementation Challenges of 3D Printing in Prosthodontics: A Ranking-Type Delphi

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 431
Author(s):  
Klara Loges ◽  
Victor Tiberius

The reduction in cost and increasing benefits of 3D printing technologies suggest the potential for printing dental prosthetics. However, although 3D printing technologies seem to be promising, their implementation in practice is complicated. To identify and rank the greatest implementation challenges of 3D printing in dental practices, the present study surveys dentists, dental technicians, and 3D printing companies using a ranking-type Delphi study. Our findings imply that a lack of knowledge is the most crucial obstacle to the implementation of 3D printing technologies. The high training effort of staff and the favoring of conventional methods, such as milling, are ranked as the second and third most relevant factors. Investment costs ranked in seventh place, whereas the lack of manufacturing facilities and the obstacle of print duration ranked below average. An inclusive implementation of additive manufacturing could be achieved primarily through the education of dentists and other staff in dental practices. In this manner, production may be managed internally, and the implementation speed may be increased.

2021 ◽  
Vol 10 (9) ◽  
pp. 2010
Author(s):  
Josef Schweiger ◽  
Daniel Edelhoff ◽  
Jan-Frederik Güth

Popular media now often present 3D printing as a widely employed technology for the production of dental prostheses. This article aims to show, based on factual information, to what extent 3D printing can be used in dental laboratories and dental practices at present. It attempts to present a rational evaluation of todays´ applications of 3D printing technology in the context of dental restorations. In addition, the article discusses future perspectives and examines the ongoing viability of traditional dental laboratory services and manufacturing processes. It also shows which expertise is needed for the digital additive manufacturing of dental restorations.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xiaoyu Zhao ◽  
Ye Zhao ◽  
Ming-De Li ◽  
Zhong’an Li ◽  
Haiyan Peng ◽  
...  

AbstractPhotopolymerization-based three-dimensional (3D) printing can enable customized manufacturing that is difficult to achieve through other traditional means. Nevertheless, it remains challenging to achieve efficient 3D printing due to the compromise between print speed and resolution. Herein, we report an efficient 3D printing approach based on the photooxidation of ketocoumarin that functions as the photosensitizer during photopolymerization, which can simultaneously deliver high print speed (5.1 cm h−1) and high print resolution (23 μm) on a common 3D printer. Mechanistically, the initiating radical and deethylated ketocoumarin are both generated upon visible light exposure, with the former giving rise to rapid photopolymerization and high print speed while the latter ensuring high print resolution by confining the light penetration. By comparison, the printed feature is hard to identify when the ketocoumarin encounters photoreduction due to the increased lateral photopolymerization. The proposed approach here provides a viable solution towards efficient additive manufacturing by controlling the photoreaction of photosensitizers during photopolymerization.


Lab on a Chip ◽  
2021 ◽  
Author(s):  
Liang Wu ◽  
Stephen Beirne ◽  
Joan-Marc Cabot Canyelles ◽  
Brett Paull ◽  
Gordon G. Wallace ◽  
...  

Additive manufacturing (3D printing) offers a flexible approach for the production of bespoke microfluidic structures such as the electroosmotic pump. Here a readily accessible fused filament fabrication (FFF) 3D printing...


Author(s):  
Gianluca Cidonio ◽  
Marco Costantini ◽  
Filippo Pierini ◽  
Chiara Scognamiglio ◽  
Tarun Agarwal ◽  
...  

To date, Additive Manufacturing (AM) has come to the fore as a major disruptive technology embodying two main research lines - developing increasingly sophisticated printing technologies and new processable materials....


2021 ◽  
Author(s):  
Alexey Pustovarenko ◽  
Beatriz Seoane ◽  
Edy Abou-Hamad ◽  
Helen E King ◽  
Bert Weckhuysen ◽  
...  

3D printing, also known as additive manufacturing technology, has greatly expanded across multiple sectors of technology replacing classical manufacturing methods by combining processing speed and high precision. The scientific interest...


Biomedicines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 336
Author(s):  
Sven Pantermehl ◽  
Steffen Emmert ◽  
Aenne Foth ◽  
Niels Grabow ◽  
Said Alkildani ◽  
...  

The use of additive manufacturing (AM) technologies is a relatively young research area in modern medicine. This technology offers a fast and effective way of producing implants, tissues, or entire organs individually adapted to the needs of a patient. Today, a large number of different 3D printing technologies with individual application areas are available. This review is intended to provide a general overview of these various printing technologies and their function for medical use. For this purpose, the design and functionality of the different applications are presented and their individual strengths and weaknesses are explained. Where possible, previous studies using the respective technologies in the field of tissue engineering are briefly summarized.


Sign in / Sign up

Export Citation Format

Share Document