scholarly journals Synergistic Effect of APP and TBC Fire-Retardants on the Physico-Mechanical Properties of Strandboard

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 435
Author(s):  
Feiyu Tian ◽  
Deliang Xu ◽  
Xinwu Xu

This study explored the feasibility of fabricating fire-retardant strandboard with low mechanical properties deterioration to the physico-mechanical properties. A hybrid fire-retardant system of ammonium polyphosphate (APP) and 1,3,5-tris(2,3-dibromopropyl)-1,3,5-triazinane-2,4,6-trione (TBC) was investigated. Thermogravimetric analysis results show that both APP and TBC enhance the thermal stability and incombustibility of wood strands. An infrared spectrum was applied to investigate the effect of flame retardants on the curing behaviors of polymeric diphenylmethane diisocyanate (PMDI) resin. Based on the results of limiting oxygen index (LOI) and Cone calorimetry (CONE), APP and TBC both lead to a higher fire retardancy to strandboard. It is worth mentioning that the two flame retardants lead to evidently differential influences on the modulus of rupture (MOR), modulus of elasticity (MOE), internal bond (IB), and water-soaking thickness swelling (TS) properties of strandboard. Hence, a hybrid flame retardant is prominent in manufacturing strandboard with both good fire retardant and satisfying physico-mechanical properties.

2015 ◽  
Vol 30 (6) ◽  
pp. 816-826 ◽  
Author(s):  
Yiren Huang ◽  
Jianwei Yang ◽  
Zhengzhou Wang

Flame-retardant properties of ammonium polyphosphate (APP) and its two microcapsules, APP with a shell of melamine–formaldehyde (MF) resin (MFAPP) and APP with a shell of epoxy resin (EPAPP), were studied in styrene–butadiene–styrene (SBS). The results indicate that APP after the microencapsulation leads to an increase in limiting oxygen index in SBS compared with APP. When dipentaerythritol is incorporated into the SBS composites containing the APP microcapsules, a further improvement in flame retardancy of the composites is observed. The microencapsulation does not result in much improvement of mechanical properties. Moreover, the effect of a compatibilizer (SBS grafted with maleic anhydride) on flame-retardant and mechanical properties of SBS/APP composites was investigated.


Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2554 ◽  
Author(s):  
Zhi Geng ◽  
Shuaishuai Yang ◽  
Lianwang Zhang ◽  
Zhenzhen Huang ◽  
Qichao Pan ◽  
...  

Introducing fire-retardant additives or building blocks into resins is a widely adopted method used for improving the fire retardancy of epoxy composites. However, the increase in viscosity and the presence of insoluble additives accompanied by resin modification remain challenges for resin transfer molding (RTM) processing. We developed a robust approach for fabricating self-extinguishing RTM composites using unmodified and flammable resins. To avoid the effects on resin fluidity and processing, we loaded the flame retardant into tackifiers instead of resins. We found that the halogen-free flame retardant, a microencapsulated red phosphorus (MRP) additive, was enriched on fabric surfaces, which endowed the composites with excellent fire retardancy. The composites showed a 79.2% increase in the limiting oxygen index, a 29.2% reduction in heat release during combustion, and could self-extinguish within two seconds after ignition. Almost no effect on the mechanical properties was observed. This approach is simple, inexpensive, and basically applicable to all resins for fabricating RTM composites. This approach adapts insoluble flame retardants to RTM processing. We envision that this approach could be extended to load other functions (radar absorbing, conductivity, etc.) into RTM composites, broadening the application of RTM processing in the field of advanced functional materials.


Materials ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3095 ◽  
Author(s):  
Muhammad Maqsood ◽  
Gunnar Seide

The objective of this study is to examine the effect of intumescent flame-retardants (IFR’s) on the spinnability of sheath/core bicomponent melt-spun fibers, produced from Polylactic acid (PLA) single polymer composites, as IFR’s have not been tested in bicomponent fibers so far. Highly crystalline PLA-containing IFR’s was used in the core component, while an amorphous PLA was tested in the sheath component of melt-spun bicomponent fibers. Ammonium polyphosphate and lignin powder were used as acid, and carbon source, respectively, together with PES as a plasticizing agent in the core component of bicomponent fibers. Multifilament fibers, with sheath/core configurations, were produced on a pilot-scale melt spinning machine, and the changes in fibers mechanical properties and crystallinity were recorded in response to varying process parameters. The crystallinity of the bicomponent fibers was studied by differential scanning calorimetry and thermal stabilities were analyzed by thermogravimetric analysis. Thermally bonded, non-woven fabric samples, from as prepared bicomponent fibers, were produced and their fire properties, such as limiting oxygen index and cone calorimetry values were measured. However, the ignitability of fabric samples was tested by a single-flame source test. Cone calorimetry showed a 46% decline in the heat release rate of nonwovens, produced from FR PLA bicomponent fibers, compared to pure PLA nonwovens. This indicated the development of an intumescent char by leaving a residual mass of 34% relative to the initial mass of the sample. It was found that the IFRs can be melt spun into bicomponent fibers by sheath/core configuration, and the enhanced functionality in the fibers can be achieved with suitable mechanical properties.


2015 ◽  
Vol 1096 ◽  
pp. 429-434 ◽  
Author(s):  
Jin Ying Pang ◽  
Xian Zhong Mo ◽  
Yu Xin Liu ◽  
Yong Fei Zhu

Flame retardation of banana fiber reinforced epoxy composites using melamine pyrophosphate and pentaerythritol as intumescent flame retardants and the influence of mechanical properties were investigated. The effects of IFR contents and the ratio of MPP and PER on limiting oxygen index (LOI) and UL94 rating of banana fiber reinforced epoxy composites has been studied. It was found that the combustion performance of the composites increases with increasing IFR contents,and the composites at the ratio of MPP/PER=2:1(weight ratio) at the same loading 40% showed the best combustion performance with IFR contents increasing,the limiting oxygen index (LOI) increased and UL94 rating reached, but the mechanical properties of composites significantly decreased. In order to increase the comprehensive properties, the flame retarded fiber was used to prepared the composites,the limiting oxygen index (LOI) of the composites significantly increased. the best complex properties were the IFR contents was 40%, the ratio of MPP/PER=2:1 (weight ratio), by the spraying method with 20g the fire retardant liquid of every 30g banana fiber.


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5168
Author(s):  
Wojciech Dukarski ◽  
Piotr Krzyżanowski ◽  
Marcin Gonsior ◽  
Iwona Rykowska

Polyurea is a synthetic material made by the reaction of isocyanate and polymer blend-containing amines. Due to its outstanding mechanical properties and fast curing, polyurea-based coatings have found dozens of applications, including waterproofing and anti-corrosion coatings. Further development of this material can create a flame-retardant product, a good alternative for common products available on the market, such as intumescent coatings. To improve the flame retardancy of polyurea, several flame retardants were investigated. The influence of aluminum hydroxide, resorcinol bis(diphenyl phosphate) (RDP), and tris chloropropyl phosphate (TCPP) on flame retardancy and morphology was studied. The following methods were used: infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis, limiting oxygen index, and tensile strength. The examinations mentioned above showed the improvement of flame-retardancy of polyurea for two products: chlorinated organophosphate and organophosphate. Nevertheless, using the chlorinated organophosphate additive caused a rapid deterioration of mechanical properties.


2014 ◽  
Vol 1056 ◽  
pp. 62-65
Author(s):  
Xue Jun Ren ◽  
Chun Guang Song ◽  
Ming Gao

Coal ash as flame retardant was used to PVC, the mechanical properties and flame retardance of the samples were studied. The resultant data show that coal ash better effect on the mechanical properties of the sample, especially tensile strength, impact strength, and 4% of coal ash obtained good flame retardance. PVC treated with flame-retardants showed a high limiting oxygen index, high decomposition temperature, which indicated that the flame retardance of the treated PVC was improved.


Molecules ◽  
2019 ◽  
Vol 24 (20) ◽  
pp. 3746 ◽  
Author(s):  
Jacob Sag ◽  
Daniela Goedderz ◽  
Philipp Kukla ◽  
Lara Greiner ◽  
Frank Schönberger ◽  
...  

Phosphorus-containing flame retardants synthesized from renewable resources have had a lot of impact in recent years. This article outlines the synthesis, characterization and evaluation of these compounds in polyesters and epoxy resins. The different approaches used in producing biobased flame retardant polyesters and epoxy resins are reported. While for the polyesters biomass derived compounds usually are phosphorylated and melt blended with the polymer, biobased flame retardants for epoxy resins are directly incorporated into the polymer structure by a using a phosphorylated biobased monomer or curing agent. Evaluating the efficiency of the flame retardant composites is done by discussing results obtained from UL94 vertical burning, limiting oxygen index (LOI) and cone calorimetry tests. The review ends with an outlook on future development trends of biobased flame retardant systems for polyesters and epoxy resins.


BioResources ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. 4354-4381
Author(s):  
Md. Shahidul Islam ◽  
Theo. G. M. van de Ven

Biodegradable textiles made from cellulose, the most abundant biopolymer, have gained attention from researchers, due to the ease with which cellulose can be chemically modified to introduce multifunctional groups, and because of its renewable and biodegradable nature. One of the most attractive features required for civilian and military applications of textiles is flame-retardancy. This review focuses on various methods employed for the fabrication of cellulose-based flame-retardant cotton textiles along with their developed flame-retardant properties over the last few years. The most common method is to merge N, S, P, and Si-based polymeric, non-polymeric, polymeric/non-polymeric hybrids, inorganic, and organic/inorganic hybrids with cellulose to fabricate flame-retardant cotton textiles. In these studies, cellulose was chemically bonded with the flame-retardants or in some cases, cotton textiles were coated by flame-retardants. The flame-retardant properties of the cotton textiles were investigated and determined by various methods, including the limiting oxygen index (LOI), the vertical flame test, thermal gravimetric analysis (TGA), and by cone calorimetry. This review demonstrates the potential of cellulose-based flame-retardant textiles for various applications.


2010 ◽  
Vol 123-125 ◽  
pp. 85-88 ◽  
Author(s):  
Rachasit Jeencham ◽  
Nitinat Suppakarn ◽  
Kasama Jarukumjorn

Ammonium polyphosphate (APP) and zinc borate (Zb), as flame retardants were incorporated into sisal fiber/polypropylene (PP) composites. Ratios of APP to Zb were varied. Maleic anhydride grafted polypropylene (MAPP) was used to improve the interfacial adhesion between polypropylene and fillers. Flammability of the composites was examined using a horizontal burning test, a vertical burning test, and a limiting oxygen index test. Morphology and mechanical properties of the composites were also investigated. The composite containing 30 phr of APP and 10 phr of Zb exhibited better flame retardancy than the composites containing other ratios of APP to Zb. The combination of APP and Zb insignificantly changed mechanical properties of the composites. In addition, SEM micrographs of the composites revealed good distribution of flame retardants and sisal fiber in PP matrix.


2014 ◽  
Vol 983 ◽  
pp. 3-6
Author(s):  
Ming Gao ◽  
Chun Guang Song ◽  
Dan Rong ◽  
Yu Wen Ji

Gangue as flame retardant was used to PVC, the mechanical properties and flame retardance of the samples were studied. The resultant data show that gangue little effect on the mechanical properties of the sample, especially tensile strength, yield stress, and 10% of gangue obtained good flame retardance. PVC treated with flame-retardants showed a high limiting oxygen index, char yield, which indicated that the flame retardance of the treated PVC was improved.


Sign in / Sign up

Export Citation Format

Share Document