scholarly journals Citric Acid in the Passivation of Titanium Dental Implants: Corrosion Resistance and Bactericide Behavior

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 545
Author(s):  
Pablo Verdeguer ◽  
Javier Gil ◽  
Miquel Punset ◽  
José María Manero ◽  
José Nart ◽  
...  

The passivation of titanium dental implants is performed in order to clean the surface and obtain a thin layer of protective oxide (TiO2) on the surface of the material in order to improve its behavior against corrosion and prevent the release of ions into the physiological environment. The most common chemical agent for the passivation process is hydrochloric acid (HCl), and in this work we intend to determine the capacity of citric acid as a passivating and bactericidal agent. Discs of commercially pure titanium (c.p.Ti) grade 4 were used with different treatments: control (Ctr), passivated by HCl, passivated by citric acid at 20% at different immersion times (20, 30, and 40 min) and a higher concentration of citric acid (40%) for 20 min. Physical-chemical characterization of all of the treated surfaces has been carried out by scanning electronic microscopy (SEM), confocal microscopy, and the ‘Sessile Drop’ technique in order to obtain information about different parameters (topography, elemental composition, roughness, wettability, and surface energy) that are relevant to understand the biological response of the material. In order to evaluate the corrosion behavior of the different treatments under physiological conditions, open circuit potential and potentiodynamic tests have been carried out. Additionally, ion release tests were realized by means of ICP-MS. The antibacterial behavior has been evaluated by performing bacterial adhesion tests, in which two strains have been used: Pseudomonas aeruginosa (Gram–) and Streptococcus sanguinis (Gram+). After the adhesion test, a bacterial viability study has been carried out (‘Life and Death’) and the number of colony-forming units has been calculated with SEM images. The results obtained show that the passivation with citric acid improves the hydrophilic character, corrosion resistance, and presents a bactericide character in comparison with the HCl treatment. The increasing of citric acid concentration improves the bactericide effect but decreases the corrosion resistance parameters. Ion release levels at high citric acid concentrations increase very significantly. The effect of the immersion times studied do not present an effect on the properties.

2021 ◽  
Vol 10 (10) ◽  
pp. e122101018606
Author(s):  
Sandra Raquel Kunst ◽  
David de Oliveira Cerveira ◽  
Jane Zoppas Ferreira ◽  
Thaís Francine Graef ◽  
Joseane de Andrade Santana ◽  
...  

Titanium has been widely used as biomaterial, especially in implantables, in which osseointegration and corrosion resistance are needed. Studies have shown that the thickness and roughness of porous titanium oxides are related to the osseointegration. According to the literature, the best anodizing conditions for obtaining nanotubes in titanium oxide are the use of a voltage of 10V in an electrolyte containing 0.15% HF in H3PO4 (w/v). In this study, was to evaluate the corrosion capacity of simulated body fluid (SBF) over titanium samples anodized on 1 mol. L-1 H3PO4 and 0.15% HF (w/v) in 1 mol.L-1 H3PO4. To perform these evaluations samples of commercially pure titanium grade 2 were used. Samples were analyzed by scanning electron microscopy, atomic force microscopy and by electrochemical corrosion tests in healthy and simulating inflammatory conditions. The hydrophobicity of oxides was tested by sessile drop essay, also using SBF. Results show that oxides obtained in H3PO4 electrolyte, barrier type oxides, work better than the porous oxides obtained in H3PO4/HF electrolyte, suggesting that barrier oxide exhibit more biomaterial characteristics than the porous oxide. These results agree with previous studies, and stand out mainly in relation to the tests performed under inflammatory conditions, more aggressive to the biomaterial.


Alloy Digest ◽  
1979 ◽  
Vol 28 (12) ◽  

Abstract RMI 0.2% Pd is a grade of commercially pure titanium to which up to 0.2% palladium has been added. It has a guaranteed minimum yield strength of 40,000 psi with good ductility and formability. It is recommended for corrosion resistance in the chemical industry and other places where the environment is mildly reducing or varies between oxidizing and reducing. The alloy has improved resistance to crevice corrosion at low pH and elevated temperatures. This datasheet provides information on composition, physical properties, elasticity, tensile properties, and bend strength. It also includes information on corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Ti-74. Producer or source: RMI Company.


Alloy Digest ◽  
2020 ◽  
Vol 69 (6) ◽  

Abstract UPM CP Titanium Grade 3 (UNS R50550) is an unalloyed commercially pure titanium that exhibits moderate strength (higher strength than that of Titanium Grade 2), along with excellent formability and corrosion resistance. It offers the highest ASME allowable design stress of any commercially pure grade of titanium, and can be used in continuous service up to 425 °C (800 °F) and in intermittent service up to 540 °C (1000 °F). This datasheet provides information on composition, physical properties, and elasticity. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Ti-167. Producer or source: United Performance Metals.


2008 ◽  
Vol 52 (4) ◽  
pp. 501-506 ◽  
Author(s):  
Teruhisa Hirayama ◽  
Marie Koike ◽  
Tadafumi Kurogi ◽  
Akiko Shibata ◽  
Shigeru Nakamura ◽  
...  

2017 ◽  
Vol 15 (1) ◽  
pp. 19-24 ◽  
Author(s):  
Davide Prando ◽  
Andrea Brenna ◽  
Fabio M. Bolzoni ◽  
Maria V. Diamanti ◽  
Mariapia Pedeferri ◽  
...  

Background Titanium has outstanding corrosion resistance due to the thin protective oxide layer that is formed on its surface. Nevertheless, in harsh and severe environments, pure titanium may suffer localized corrosion. In those conditions, costly titanium alloys containing palladium, nickel and molybdenum are used. This purpose investigated how it is possible to control corrosion, at lower cost, by electrochemical surface treatment on pure titanium, increasing the thickness of the natural oxide layer. Methods Anodic oxidation was performed on titanium by immersion in H2SO4 solution and applying voltages ranging from 10 to 80 V. Different anodic current densities were considered. Potentiodynamic tests in chloride- and fluoride-containing solutions were carried out on anodized titanium to determine the pitting potential. Results All tested anodizing treatments increased corrosion resistance of pure titanium, but never reached the performance of titanium alloys. The best corrosion behavior was obtained on titanium anodized at voltages lower than 40 V at 20 mA/cm2. Conclusions Titanium samples anodized at low cell voltage were seen to give high corrosion resistance in chloride- and fluoride-containing solutions. Electrolyte bath and anodic current density have little effect on the corrosion behavior.


JOM ◽  
2019 ◽  
Vol 71 (12) ◽  
pp. 4910-4916
Author(s):  
I. M. Pohrelyuk ◽  
A. G. Luk’yanenko ◽  
O. V. Tkachuk ◽  
Kh. S. Shlyahetka

Materials ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 3728 ◽  
Author(s):  
Eugenio Velasco-Ortega ◽  
Antonio Flichy-Fernández ◽  
Miquel Punset ◽  
Alvaro Jiménez-Guerra ◽  
José María Manero ◽  
...  

Sixty-four fractured commercially pure titanium (cp-Ti) narrow dental implants (NDIs) with similar macrogeometry and connection designs were studied after different implantation times in humans in order to determine their reliability and to evaluate the causes of the fracture. These NDIs were compared with other similar implants, made with alloyed titanium with 15% Zr and with 12% strained titanium. Original implants were tested under static and fatigue conditions, simulating the tri-axial loads in the mouth by means of a Bionix hydraulic test machine. Fractography was studied using field-emission scanning electron microscopy (FSEM). The results showed that cp-Ti NDI exhibits low strength for mechanical cycling, and the alloyed Ti and strained titanium increase the mechanical strength, guaranteeing long term mechanical behavior. NDIs fractured due to fatigue, and, in some cases, the presence of cracks in the original NDIs quickly led to fracture. These cracks were attributed to plastic deformation during machining were found to be exacerbated due to acid etching in the passivation process. All cases of fracture were cp-Ti dental implants due to the low fatigue limit. The results show that, when titanium is alloyed or cold-worked, the fatigue limit is higher than cp-Ti. This in vitro research will help clinicians to select a better NDI system for safer treatment.


Sign in / Sign up

Export Citation Format

Share Document