scholarly journals A New Generation of X-ray Baggage Scanners Based on a Different Physical Principle

Materials ◽  
2011 ◽  
Vol 4 (10) ◽  
pp. 1846-1860 ◽  
Author(s):  
Konstantin Ignatyev ◽  
Peter R.T. Munro ◽  
Deeph Chana ◽  
Robert D. Speller ◽  
Alessandro Olivo
The Analyst ◽  
2016 ◽  
Vol 141 (5) ◽  
pp. 1587-1610 ◽  
Author(s):  
Zou Xiaobo ◽  
Huang Xiaowei ◽  
Malcolm Povey

The main food quality traits of interest using non-invasive sensing techniques are sensory characteristics, chemical composition, physicochemical properties, health-protecting properties, nutritional characteristics and safety. A wide range of non-invasive sensing techniques, from optical, acoustical, electrical, to nuclear magnetic, X-ray, biosensor, microwave and terahertz, are organized according to physical principle.


Materials ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1378 ◽  
Author(s):  
Zafar Ibupoto ◽  
Aneela Tahira ◽  
Hamid Raza ◽  
Gulzar Ali ◽  
Aftab Khand ◽  
...  

It is always demanded to prepare a nanostructured material with prominent functional properties for the development of a new generation of devices. This study is focused on the synthesis of heart/dumbbell-like CuO nanostructures using a low-temperature aqueous chemical growth method with vitamin B12 as a soft template and growth directing agent. CuO nanostructures are characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) techniques. CuO nanostructures are heart/dumbbell like in shape, exhibit high crystalline quality as demonstrated by XRD, and have no impurity as confirmed by XPS. Apparently, CuO material seems to be porous in structure, which can easily carry large amount of enzyme molecules, thus enhanced performance is shown for the determination of uric acid. The working linear range of the biosensor is 0.001 mM to 10 mM with a detection limit of 0.0005 mM and a sensitivity of 61.88 mV/decade. The presented uric acid biosensor is highly stable, repeatable, and reproducible. The analytical practicality of the proposed uric acid biosensor is also monitored. The fabrication methodology is inexpensive, simple, and scalable, which ensures the capitalization of the developed uric acid biosensor for commercialization. Also, CuO material can be used for various applications such as solar cells, lithium ion batteries, and supercapacitors.


2012 ◽  
Vol 454 ◽  
pp. 216-220
Author(s):  
Ming Bao Liu ◽  
Jin Yao ◽  
Wan Zhong Yin ◽  
Li Yi Duan ◽  
Ying Gao ◽  
...  
Keyword(s):  

2020 ◽  
Vol 492 (4) ◽  
pp. 5271-5279 ◽  
Author(s):  
Nick Higginbottom ◽  
Christian Knigge ◽  
Stuart A Sim ◽  
Knox S Long ◽  
James H Matthews ◽  
...  

ABSTRACT X-ray signatures of outflowing gas have been detected in several accreting black hole binaries, always in the soft state. A key question raised by these observations is whether these winds might also exist in the hard state. Here, we carry out the first full-frequency radiation hydrodynamic simulations of luminous (${L = 0.5 \, L_{\mathrm{\mathrm{ Edd}}}}$) black hole X-ray binary systems in both the hard and the soft state, with realistic spectral energy distributions (SEDs). Our simulations are designed to describe X-ray transients near the peak of their outburst, just before and after the hard-to-soft state transition. At these luminosities, it is essential to include radiation driving, and we include not only electron scattering, but also photoelectric and line interactions. We find powerful outflows with ${\dot{M}_{\mathrm{ wind}} \simeq 2 \, \dot{M}_{\mathrm{ acc}}}$ are driven by thermal and radiation pressure in both hard and soft states. The hard-state wind is significantly faster and carries approximately 20 times as much kinetic energy as the soft-state wind. However, in the hard state the wind is more ionized, and so weaker X-ray absorption lines are seen over a narrower range of viewing angles. Nevertheless, for inclinations ≳80°, blueshifted wind-formed Fe xxv and Fe xxvi features should be observable even in the hard state. Given that the data required to detect these lines currently exist for only a single system in a luminous hard state – the peculiar GRS 1915+105 – we urge the acquisition of new observations to test this prediction. The new generation of X-ray spectrometers should be able to resolve the velocity structure.


2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Sangeun Cho ◽  
Sungwoo Kim ◽  
Jongmin Kim ◽  
Yongcheol Jo ◽  
Ilhwan Ryu ◽  
...  

Abstract Compared with solid scintillators, liquid scintillators have limited capability in dosimetry and radiography due to their relatively low light yields. Here, we report a new generation of highly efficient and low-cost liquid scintillators constructed by surface hybridisation of colloidal metal halide perovskite CsPbA3 (A: Cl, Br, I) nanocrystals (NCs) with organic molecules (2,5-diphenyloxazole). The hybrid liquid scintillators, compared to state-of-the-art CsI and Gd2O2S, demonstrate markedly highly competitive radioluminescence quantum yields under X-ray irradiation typically employed in diagnosis and treatment. Experimental and theoretical analyses suggest that the enhanced quantum yield is associated with X-ray photon-induced charge transfer from the organic molecules to the NCs. High-resolution X-ray imaging is demonstrated using a hybrid CsPbBr3 NC-based liquid scintillator. The novel X-ray scintillation mechanism in our hybrid scintillators could be extended to enhance the quantum yield of various types of scintillators, enabling low-dose radiation detection in various fields, including fundamental science and imaging.


2009 ◽  
Vol 24 (S1) ◽  
pp. S26-S30 ◽  
Author(s):  
P. Lukáš ◽  
P. Strunz ◽  
V. Davydov ◽  
R. Kužel

The peak profile shape analysis has been preferentially used in the evaluation of X-ray and synchrotron powder diffraction pattern. However, neutron diffraction facilities of new generation frequently offer the instrumental resolution high enough to efficiently study the effects of broadening of neutron diffraction profiles. The present paper describes the procedure for a detailed evaluation of Bragg peak shape based on the method of transformed model fitting (TMF) which has been recently developed particularly for the treatment of neutron diffraction profiles. Microstructure modeling is performed in the reciprocal space and the convolution of the model with the instrumental resolution curve is fitted to the profiles recorded in the diffraction experiment.


2004 ◽  
Vol 194 ◽  
pp. 75-76
Author(s):  
N. A. Webb ◽  
B. Gendre ◽  
D. Barret

AbstractGlobular clusters (GCs) harbour a large number of close binaries which are hard to identify optically due to high stellar densities. Observing these GCs in X-rays, in which the compact binaries are bright, diminishes the over-crowding problem. Using the new generation of X-ray observatories, it is possible to identify populations of neutron star low mass X-ray binaries, cataclysmic variables and millisecond pulsars as well as other types of binaries. We present the spectra of a variety of binaries that we have identified in four GCs observed by XMM-Newton. We show that through population studies we can begin to understand the formation of individual classes of binaries in GCs and hence start to unfold the complex evolutionary paths of these systems.


2019 ◽  
Vol 10 ◽  
pp. 2073-2083
Author(s):  
Andrea Giaccherini ◽  
Giuseppe Cucinotta ◽  
Stefano Martinuzzi ◽  
Enrico Berretti ◽  
Werner Oberhauser ◽  
...  

The new generation of solar cells aims to overcome many of the issues created by silicon-based devices (e.g., decommissioning, flexibility and high-energy production costs). Due to the scarcity of the resources involved in the process and the need for the reduction of potential pollution, a greener approach to solar cell material production is required. Among others, the solvothermal approach for the synthesis of nanocrystalline Cu–Sn–S (CTS) materials fulfils all of these requirements. The material constraints must be considered, not only for the final product, but for the whole production process. Most works reporting the successful synthesis of CTS have employed surfactants, high pressure or noxious solvents. In this paper, we demonstrate the synthesis of nanocrystalline kuramite by means of a simpler, greener and scalable solvothermal synthesis. We exploited a multianalytical characterization approach (X-ray diffraction, extended X-ray absorption fine structure, field emission scanning electron microscopy, Raman spectroscopy and electronic microprobe analysis (EMPA)) to discriminate kuramite from other closely related polymorphs. Moreover, we confirmed the presence of structural defects due to a relevant antisite population.


Sign in / Sign up

Export Citation Format

Share Document