scholarly journals Designing a Low-Cost Mechatronic Device for Semi-Automatic Saffron Harvesting

Machines ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 94
Author(s):  
Alessandro Rocco Denarda ◽  
Andrea Manuello Manuello Bertetto ◽  
Giuseppe Carbone

This paper addresses the design of a novel mechatronic device for saffron harvesting. The main proposed challenge consists of proposing a new paradigm for semi-automatic harvesting of saffron flowers. The proposed novel solution is designed for being easily portable with user-friendly and cost-oriented features and with a fully electric battery-powered actuation. A preliminary concept design has been proposed as based on a specific novel cam mechanism in combination with an elastic spring for fulfilling the detachment of the flowers from their stems. Numerical calculations and simulations have been carried out to complete the full design of a proof-of-concept prototype. Preliminary experimental tests have been carried out to demonstrate the engineering feasibility and effectiveness of the proposed design solutions, whose concept has been submitted for patenting.

Electronics ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 435 ◽  
Author(s):  
Umberto Papa ◽  
Salvatore Ponte

Among non-destructive inspection (NDI) techniques, General Visual Inspection (GVI), global or zonal, is the most widely used, being quick and relatively less expensive. In the aeronautic industry, GVI is a basic procedure for monitoring aircraft performance and ensuring safety and serviceability, and over 80% of the inspections on large transport category aircrafts are based on visual testing, both directly and remotely, either unaided or aided via mirrors, lenses, endoscopes or optic fiber devices coupled to cameras. This paper develops the idea of a global and/or zonal GVI procedure implemented by means of an autonomous unmanned aircraft system (UAS), equipped with a low-cost, high-definition (HD) camera for carrying out damage detection of panels, and a series of distance and trajectory sensors for obstacle avoidance and inspection path planning. An ultrasonic distance keeper system (UDKS), useful to guarantee a fixed distance between the UAS and the aircraft, was developed, and several ultrasonic sensors (HC-SR-04) together with an HD camera and a microcontroller were installed on the selected platform, a small commercial quad-rotor (micro-UAV). The overall system concept design and some laboratory experimental tests are presented to show the effectiveness of entrusting aircraft inspection procedures to a small UAS and a PC-based ground station for data collection and processing.


2018 ◽  
Vol 148 ◽  
pp. 01005
Author(s):  
Guido Luzi ◽  
Michele Crosetto ◽  
Eduard Angelats ◽  
Enric Fernández

The Real-Aperture-Radar (RAR) interferometry technique consolidated in the last decade as an operational tool for the monitoring of large civil engineering structures as bridges, towers, and buildings. In literature, experimental campaigns collected through a well-known commercial equipment have been widely documented, while the cases where different types of sensors have been tested are a few. On the bases of some experimental tests, a new sensor working at high frequency, providing some improved performances, is here discussed. The core of the proposed system is an off-the-shelf, linear frequency modulated continuous wave device. The development of this apparatus is aimed at achieving a proof-of-concept, tackling operative aspects related to the development of a low cost and reliable system. The capability to detect the natural frequencies of a lightpole has been verified; comparing the results of the proposed sensor with those ones obtained through a commercial system based on the same technique, a more detailed description of the vibrating structure has been achieved. The results of this investigation confirmed that the development of sensors working at higher frequencies, although deserving deeper studies, is very promising and could open new applications demanding higher spatial resolutions at close ranges.


Electronics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 21
Author(s):  
Tiago Custódio ◽  
Cristiano Alves ◽  
Pedro Silva ◽  
Jorge Silva ◽  
Carlos Rodrigues ◽  
...  

The current design paradigm of car cabin components assumes seats aligned with the driving direction. All passengers are aligned with the driver that, until recently, was the only element in charge of controlling the vehicle. The new paradigm of self-driving cars eliminates several of those requirements, releasing the driver from control duties and creating new opportunities for entertaining the passengers during the trip. This creates the need for controlling functionalities that must be closer to each user, namely on the seat. This work proposes the use of low-cost capacitive touch sensors for controlling car functions, multimedia controls, seat orientation, door windows, and others. In the current work, we have reached a proof of concept that is functional, as shown for several cabin functionalities. The proposed concept can be adopted by current car manufacturers without changing the automobile construction pipeline. It is flexible and can adopt a variety of new functionalities, mostly software-based, added by the manufacturer, or customized by the end-user. Moreover, the newly proposed technology uses a smaller number of plastic parts for producing the component, which implies savings in terms of production cost and energy, while increasing the life cycle of the component.


2017 ◽  
Vol 3 (2) ◽  
pp. 619-622
Author(s):  
Manuel Dethloff ◽  
Hermann Seitz ◽  
Marc Dangers

AbstractFor the development of a novel, user-friendly and low cost point-of-care diagnostic device for the detection of disease specific biomarker a flow optimised design of the test system has to be investigated. The resulting test system is characterised by a reduced execution period, a reduction of execution steps and an integrated waste management. Based on previous results, the current study focused on the design implementation of the fluidic requirements, e. g. tightness, inside the test device. With the help of fluid flow simulations (CFD – computational fluid dynamics) the flow behaviour inside the test device was analysed for different designs and arrangements. Prototypes generated from additive manufacturing technologies (PolyJet modeling) are used for validating the simulation results and further experimental tests.


2012 ◽  
Vol 44 (2) ◽  
pp. 75-93
Author(s):  
Peter Mortensen

This essay takes its cue from second-wave ecocriticism and from recent scholarly interest in the “appropriate technology” movement that evolved during the 1960s and 1970s in California and elsewhere. “Appropriate technology” (or AT) refers to a loosely-knit group of writers, engineers and designers active in the years around 1970, and more generally to the counterculture’s promotion, development and application of technologies that were small-scale, low-cost, user-friendly, human-empowering and environmentally sound. Focusing on two roughly contemporary but now largely forgotten American texts Sidney Goldfarb’s lyric poem “Solar-Heated-Rhombic-Dodecahedron” (1969) and Gurney Norman’s novel Divine Right’s Trip (1971)—I consider how “hip” literary writers contributed to eco-technological discourse and argue for the 1960s counterculture’s relevance to present-day ecological concerns. Goldfarb’s and Norman’s texts interest me because they conceptualize iconic 1960s technologies—especially the Buckminster Fuller-inspired geodesic dome and the Volkswagen van—not as inherently alienating machines but as tools of profound individual, social and environmental transformation. Synthesizing antimodernist back-to-nature desires with modernist enthusiasm for (certain kinds of) machinery, these texts adumbrate a humanity- and modernity-centered post-wilderness model of environmentalism that resonates with the dilemmas that we face in our increasingly resource-impoverished, rapidly warming and densely populated world.


Author(s):  
José Capmany ◽  
Daniel Pérez

Programmable Integrated Photonics (PIP) is a new paradigm that aims at designing common integrated optical hardware configurations, which by suitable programming can implement a variety of functionalities that, in turn, can be exploited as basic operations in many application fields. Programmability enables by means of external control signals both chip reconfiguration for multifunction operation as well as chip stabilization against non-ideal operation due to fluctuations in environmental conditions and fabrication errors. Programming also allows activating parts of the chip, which are not essential for the implementation of a given functionality but can be of help in reducing noise levels through the diversion of undesired reflections. After some years where the Application Specific Photonic Integrated Circuit (ASPIC) paradigm has completely dominated the field of integrated optics, there is an increasing interest in PIP justified by the surge of a number of emerging applications that are and will be calling for true flexibility, reconfigurability as well as low-cost, compact and low-power consuming devices. This book aims to provide a comprehensive introduction to this emergent field covering aspects that range from the basic aspects of technologies and building photonic component blocks to the design alternatives and principles of complex programmable photonics circuits, their limiting factors, techniques for characterization and performance monitoring/control and their salient applications both in the classical as well as in the quantum information fields. The book concentrates and focuses mainly on the distinctive features of programmable photonics as compared to more traditional ASPIC approaches.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Yehe Liu ◽  
Andrew M. Rollins ◽  
Richard M. Levenson ◽  
Farzad Fereidouni ◽  
Michael W. Jenkins

AbstractSmartphone microscopes can be useful tools for a broad range of imaging applications. This manuscript demonstrates the first practical implementation of Microscopy with Ultraviolet Surface Excitation (MUSE) in a compact smartphone microscope called Pocket MUSE, resulting in a remarkably effective design. Fabricated with parts from consumer electronics that are readily available at low cost, the small optical module attaches directly over the rear lens in a smartphone. It enables high-quality multichannel fluorescence microscopy with submicron resolution over a 10× equivalent field of view. In addition to the novel optical configuration, Pocket MUSE is compatible with a series of simple, portable, and user-friendly sample preparation strategies that can be directly implemented for various microscopy applications for point-of-care diagnostics, at-home health monitoring, plant biology, STEM education, environmental studies, etc.


2020 ◽  
Vol 53 (2) ◽  
pp. 15161-15166
Author(s):  
Rodolfo Orjuela ◽  
Jean-Philippe Lauffenburger ◽  
Jonathan Ledy ◽  
Michel Basset ◽  
Joel Lambert ◽  
...  
Keyword(s):  
Low Cost ◽  

Author(s):  
Yannick van Hierden ◽  
Timo Dietrich ◽  
Sharyn Rundle-Thiele

In recent years, the relevance of eHealth interventions has become increasingly evident. However, a sequential procedural application to cocreating eHealth interventions is currently lacking. This paper demonstrates the implementation of a participatory design (PD) process to inform the design of an eHealth intervention aiming to enhance well-being. PD sessions were conducted with 57 people across four sessions. Within PD sessions participants experienced prototype activities, provided feedback and designed program interventions. A 5-week eHealth well-being intervention focusing on lifestyle, habits, physical activity, and meditation was proposed. The program is suggested to be delivered through online workshops and online community interaction. A five-step PD process emerged; namely, (1) collecting best practices, (2) participatory discovery, (3) initial proof-of-concept, (4) participatory prototyping, and (5) pilot intervention proof-of-concept finalisation. Health professionals, behaviour change practitioners and program planners can adopt this process to ensure end-user cocreation using the five-step process. The five-step PD process may help to create user-friendly programs.


Sign in / Sign up

Export Citation Format

Share Document