scholarly journals Predicting Fire Brigades Operational Breakdowns: A Real Case Study

Mathematics ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 1383 ◽  
Author(s):  
Selene Cerna ◽  
Christophe Guyeux ◽  
Guillaume Royer ◽  
Céline Chevallier ◽  
Guillaume Plumerel

Over the years, fire departments have been searching for methods to identify their operational disruptions and establish strategies that allow them to efficiently organize their resources. The present work develops a methodology for breakage calculation and another for predicting disruptions based on machine learning techniques. The main objective is to establish indicators to identify the failures due to the temporal state of the organization in the human and vehicular material. Likewise, by forecasting disruptions, to determine strategies for the deployment or acquisition of the necessary armament. This would allow improving operational resilience and increasing the efficiency of the firemen over time. The methodology was applied to the Departmental Fire and Rescue Doubs (SDIS25) in France. However, it is generic enough to be extended and adapted to other fire departments. Considering a historic of breakdowns of 2017 and 2018, the best predictions of public service breakdowns for the year 2019, presented a root mean squared error of 2.5602 and a mean absolute error of 2.0240 on average with the XGBoost technique.

2013 ◽  
Vol 734-737 ◽  
pp. 1679-1682
Author(s):  
Sureeporn Meehom ◽  
Nopphadon Khodpun

Electricity energy is vital in social and economic for nation development. The electricity consumption analysis plays an important role for sustainable energy and electricity resources management in the future. In this paper, the influence of demographical variables on the annual electricity consumption in Nakhonratchasima has been investigated by multiple regression analysis. It is founded that the electricity consumption correlated with four demographic variables, which are the number of electricity consumers, the amount of high speed diesel usages, the number of industrial factory and the number of employed labor force. The historical electricity consumption and all variables for the period 20022010 have been analyzed in 8 models for electricity prediction in 2011. In conclusion, the effective model has been selected by comparison of adjusted R2, mean absolute error (MAE) and root mean squared error (RMSE) of the proposed models. Model 8 is acceptable in relation to electricity consumption analysis with adjusted-R2, RMSE and MAE equal to 0.9980, 0.7540% and 0.6095% respectively. The results indicate that the model using all four variables has strong ability to predict future annual electricity consumption with 4,195,837,877 kWh in 2011.


Vibration ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 341-356
Author(s):  
Jessada Sresakoolchai ◽  
Sakdirat Kaewunruen

Various techniques have been developed to detect railway defects. One of the popular techniques is machine learning. This unprecedented study applies deep learning, which is a branch of machine learning techniques, to detect and evaluate the severity of rail combined defects. The combined defects in the study are settlement and dipped joint. Features used to detect and evaluate the severity of combined defects are axle box accelerations simulated using a verified rolling stock dynamic behavior simulation called D-Track. A total of 1650 simulations are run to generate numerical data. Deep learning techniques used in the study are deep neural network (DNN), convolutional neural network (CNN), and recurrent neural network (RNN). Simulated data are used in two ways: simplified data and raw data. Simplified data are used to develop the DNN model, while raw data are used to develop the CNN and RNN model. For simplified data, features are extracted from raw data, which are the weight of rolling stock, the speed of rolling stock, and three peak and bottom accelerations from two wheels of rolling stock. In total, there are 14 features used as simplified data for developing the DNN model. For raw data, time-domain accelerations are used directly to develop the CNN and RNN models without processing and data extraction. Hyperparameter tuning is performed to ensure that the performance of each model is optimized. Grid search is used for performing hyperparameter tuning. To detect the combined defects, the study proposes two approaches. The first approach uses one model to detect settlement and dipped joint, and the second approach uses two models to detect settlement and dipped joint separately. The results show that the CNN models of both approaches provide the same accuracy of 99%, so one model is good enough to detect settlement and dipped joint. To evaluate the severity of the combined defects, the study applies classification and regression concepts. Classification is used to evaluate the severity by categorizing defects into light, medium, and severe classes, and regression is used to estimate the size of defects. From the study, the CNN model is suitable for evaluating dipped joint severity with an accuracy of 84% and mean absolute error (MAE) of 1.25 mm, and the RNN model is suitable for evaluating settlement severity with an accuracy of 99% and mean absolute error (MAE) of 1.58 mm.


2021 ◽  
Author(s):  
Hangsik Shin

BACKGROUND Arterial stiffness due to vascular aging is a major indicator for evaluating cardiovascular risk. OBJECTIVE In this study, we propose a method of estimating age by applying machine learning to photoplethysmogram for non-invasive vascular age assessment. METHODS The machine learning-based age estimation model that consists of three convolutional layers and two-layer fully connected layers, was developed using segmented photoplethysmogram by pulse from a total of 752 adults aged 19–87 years. The performance of the developed model was quantitatively evaluated using mean absolute error, root-mean-squared-error, Pearson’s correlation coefficient, coefficient of determination. The Grad-Cam was used to explain the contribution of photoplethysmogram waveform characteristic in vascular age estimation. RESULTS Mean absolute error of 8.03, root mean squared error of 9.96, 0.62 of correlation coefficient, and 0.38 of coefficient of determination were shown through 10-fold cross validation. Grad-Cam, used to determine the weight that the input signal contributes to the result, confirmed that the contribution to the age estimation of the photoplethysmogram segment was high around the systolic peak. CONCLUSIONS The machine learning-based vascular aging analysis method using the PPG waveform showed comparable or superior performance compared to previous studies without complex feature detection in evaluating vascular aging. CLINICALTRIAL 2015-0104


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Jayaraman J. Thiagarajan ◽  
Bindya Venkatesh ◽  
Rushil Anirudh ◽  
Peer-Timo Bremer ◽  
Jim Gaffney ◽  
...  

Abstract Predictive models that accurately emulate complex scientific processes can achieve speed-ups over numerical simulators or experiments and at the same time provide surrogates for improving the subsequent analysis. Consequently, there is a recent surge in utilizing modern machine learning methods to build data-driven emulators. In this work, we study an often overlooked, yet important, problem of choosing loss functions while designing such emulators. Popular choices such as the mean squared error or the mean absolute error are based on a symmetric noise assumption and can be unsuitable for heterogeneous data or asymmetric noise distributions. We propose Learn-by-Calibrating, a novel deep learning approach based on interval calibration for designing emulators that can effectively recover the inherent noise structure without any explicit priors. Using a large suite of use-cases, we demonstrate the efficacy of our approach in providing high-quality emulators, when compared to widely-adopted loss function choices, even in small-data regimes.


1999 ◽  
Vol 28 (8) ◽  
pp. 1813-1822 ◽  
Author(s):  
Shaul K. Bar-Lev ◽  
Benzion Boukai ◽  
Peter Enis

Author(s):  
Hisyam Ihsan ◽  
Rahmat Syam ◽  
Fahrul Ahmad

Abstrak. Peramalan penjualan memungkinkan sebuah perusahan memilih kebijakan yang optimal untuk membuat keputusan yang sesuai dan mempertahankan efisiensi dari kegiatan operasional. Rumah Bakso Bang Ipul adalah salah satu usaha yang melakukan penjualan yakni penjualan bakso kemasaan/kiloan. Oleh sebab itu,. Rumah Bakso Bang Ipul sangat memerlukan peramalan penjualan untuk meningkatkan keuntungan dan menghindari terjadinya kelebihan atau kekurangan persedian bakso kemasaan/kiloan. Penelitian ini dilakukan peramalan dengan metode exponential smoothing. Adapun parameter atau a yang digunakan dalam meramalkan penjualan adalah a = 0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8, dan 0.9. Singel exponential smoothing melakukan perbandingan dalam menentukan nilai a, dengan mencari nilai a tersebut secara trial and error sampai menemukan a yang memiliki error minimum dengan pencarian menggunakan metode mean absolute error (MAE) dan metode Mean Squaered error (MSE). Sehingga dipilih a = 0.1 dengan nilai MAE = 6.23 dan nilai MSE = 58.32. berdasarkan hasil ini, dengan menggunakan metode singel exponential smoothing dan a =0.1 diperoleh hasil peramalan penjualan bakso bang ipul pada bulan juni 2018 sebanyak 48 kilogram.Kata Kunci: Peramalan, Metode Exponential Smoothing, Metode Singel Exponential SmoothingAbstract. Sales forecasting enables an optimal policy of the company had to make the appropriate decision and maintain the efficiency of operational activities. Rumah Bakso Bang Ipul is a business that sells packaged meatballs. Therefore, Rumah Bakso Bang Ipul is in need of sales forecasting to increase profit and avoid the occurrence or lack of supply of packaged meatballs. This research was conducted by the method of exponential smoothing forecasting. As for parameter or a used predicting sales is a = 0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8, and 0.9. single exponential smoothing do a comparison in determining the value of a, by searching for the value of such a trial and error to find a that has minimum error with search method using the mean absolute error (MAE) and mean squared error (MSE). So that selected a = 0.1 with MAE value = 6.23 and MSE Value = 58.32. Based on  these results, using the method of single exponential smoothing and retrieved results forecasting Rumah Bakso Bang Ipul in July 2018 as much as 48 kilograms.Keywords: Forecasting, Method of exponential smoothing, Method of single exponential smoothing.


Author(s):  
SONALI R. MAHAKALE ◽  
NILESHSINGH V. THAKUR

This paper deals with the comparative study of research work done in the field of Image Filtering. Different noises can affect the image in different ways. Although various solutions are available for denoising them, a detail study of the research is required in order to design a filter which will fulfill the desire aspects along with handling most of the image filtering issues. An output image should be judged on the basis of Image Quality Metrics for ex-: Peak-Signal-to-Noise ratio (PSNR), Mean Squared Error (MSE) and Mean Absolute Error (MAE) and Execution Time.


2019 ◽  
Vol 9 (20) ◽  
pp. 4338 ◽  
Author(s):  
Hossein Moayedi ◽  
Dieu Tien Bui ◽  
Anastasios Dounis ◽  
Zongjie Lyu ◽  
Loke Kok Foong

The heating load calculation is the first step of the iterative heating, ventilation, and air conditioning (HVAC) design procedure. In this study, we employed six machine learning techniques, namely multi-layer perceptron regressor (MLPr), lazy locally weighted learning (LLWL), alternating model tree (AMT), random forest (RF), ElasticNet (ENet), and radial basis function regression (RBFr) for the problem of designing energy-efficient buildings. After that, these approaches were used to specify a relationship among the parameters of input and output in terms of the energy performance of buildings. The calculated outcomes for datasets from each of the above-mentioned models were analyzed based on various known statistical indexes like root relative squared error (RRSE), root mean squared error (RMSE), mean absolute error (MAE), correlation coefficient (R2), and relative absolute error (RAE). It was found that between the discussed machine learning-based solutions of MLPr, LLWL, AMT, RF, ENet, and RBFr, the RF was nominated as the most appropriate predictive network. The RF network outcomes determined the R2, MAE, RMSE, RAE, and RRSE for the training dataset to be 0.9997, 0.19, 0.2399, 2.078, and 2.3795, respectively. The RF network outcomes determined the R2, MAE, RMSE, RAE, and RRSE for the testing dataset to be 0.9989, 0.3385, 0.4649, 3.6813, and 4.5995, respectively. These results show the superiority of the presented RF model in estimation of early heating load in energy-efficient buildings.


2018 ◽  
Vol 14 (2) ◽  
pp. 137
Author(s):  
Haerul Fatah ◽  
Agus Subekti

Uang elektronik menjadi pilihan yang mulai ramai digunakan oleh banyak orang, terutama para pengusaha, pebisnis dan investor, karena menganggap bahwa uang elektronik akan menggantikan uang fisik dimasa depan. Cryptocurrency muncul sebagai jawaban atas kendala uang eletronik yang sangat bergantung kepada pihak ketiga. Salah satu jenis Cryptocurrency yaitu Bitcoin. Analogi keuangan Bitcoin sama dengan analogi pasar saham, yakni fluktuasi harga tidak tentu setiap detik. Tujuan dari penelitian yang dilakukan yaitu melakukan prediksi harga Cryptocurrency dengan menggunakan metode KNN (K-Nearest Neighbours). Hasil dari penelitian ini diketahui bahwa model KNN yang paling baik dalam memprediksi harga Cryptocurrency adalah KNN dengan parameter nilai K=3 dan Nearest Neighbour Search Algorithm : Linear NN Search. Dengan nilai Mean Absolute Error (MAE) sebesar 0.0018 dan Root Mean Squared Error (RMSE) sebesar 0.0089.


Author(s):  
Eslam Mohammed Abdelkader ◽  
Osama Moselhi ◽  
Mohamed Marzouk ◽  
Tarek Zayed

Bridges are prone to severe deterioration agents which promote their degradation over the course of their lifetime. Furthermore, maintenance budgets are being trimmed. This state of circumstances entails the development of a computer vision-based method for the condition assessment of bridge elements in an attempt to circumvent the drawbacks of visual inspection-based models. Scaling is progressive local flaking or loss in the surface portion of concrete that affects the functional and structural integrity of reinforced concrete bridges. As such, this research study proposes a self-adaptive three-tier method for the automated detection and assessment of scaling severity levels in reinforced concrete bridges. The first tier relies on the integration of cross entropy function and grey wolf optimization (GWO) algorithm for the segmentation of scaling pixels. The second tier is designated for the autonomous interpretation of scaling area. In this model, a hybrid feature extraction algorithm is proposed based on the fusion of singular value decomposition and discrete wavelet transform for the efficient and robust extraction of the most dominant features in scaling images. Then an integration of Elman neural network and GWO algorithm is proposed for the sake of improving the prediction accuracies of scaling area though optimization of both structure and parameters of Elman neural network. The third tier aims at establishing a unified scaling severity index to assess the extent of severities of scaling according to its area and depth. The developed method is validated through multi-layered comparative analysis that involved performance evaluation comparisons, statistical comparisons and box plots. Results demonstrated that the developed scaling detection model significantly outperformed a set of widely-utilized classical segmentation models achieving mean squared error, mean absolute error, peak signal to noise ratio and cross entropy of 0.175, 0.407, 55.754 and 26011.019, respectively. With regards to the developed scaling evaluation model, it accomplished remarkable better and more robust performance that other meta-heuristic-based Elman neural network models and conventional prediction models. In this context, it obtained mean absolute percentage error, root-mean squared error and mean absolute error 1.513%, 29.836 and 12.066, respectively, as per split validation. It is anticipated that the developed integrated computer vision-based method could serve as the basis of automated, reliable and cost-effective inspection platform of reinforced concrete bridges which can assist departments of transportation in taking effective preventive maintenance and rehabilitation actions.


Sign in / Sign up

Export Citation Format

Share Document