scholarly journals Predicting Heating Load in Energy-Efficient Buildings Through Machine Learning Techniques

2019 ◽  
Vol 9 (20) ◽  
pp. 4338 ◽  
Author(s):  
Hossein Moayedi ◽  
Dieu Tien Bui ◽  
Anastasios Dounis ◽  
Zongjie Lyu ◽  
Loke Kok Foong

The heating load calculation is the first step of the iterative heating, ventilation, and air conditioning (HVAC) design procedure. In this study, we employed six machine learning techniques, namely multi-layer perceptron regressor (MLPr), lazy locally weighted learning (LLWL), alternating model tree (AMT), random forest (RF), ElasticNet (ENet), and radial basis function regression (RBFr) for the problem of designing energy-efficient buildings. After that, these approaches were used to specify a relationship among the parameters of input and output in terms of the energy performance of buildings. The calculated outcomes for datasets from each of the above-mentioned models were analyzed based on various known statistical indexes like root relative squared error (RRSE), root mean squared error (RMSE), mean absolute error (MAE), correlation coefficient (R2), and relative absolute error (RAE). It was found that between the discussed machine learning-based solutions of MLPr, LLWL, AMT, RF, ENet, and RBFr, the RF was nominated as the most appropriate predictive network. The RF network outcomes determined the R2, MAE, RMSE, RAE, and RRSE for the training dataset to be 0.9997, 0.19, 0.2399, 2.078, and 2.3795, respectively. The RF network outcomes determined the R2, MAE, RMSE, RAE, and RRSE for the testing dataset to be 0.9989, 0.3385, 0.4649, 3.6813, and 4.5995, respectively. These results show the superiority of the presented RF model in estimation of early heating load in energy-efficient buildings.

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-21
Author(s):  
Rashid Naseem ◽  
Bilal Khan ◽  
Arshad Ahmad ◽  
Ahmad Almogren ◽  
Saima Jabeen ◽  
...  

Software defects prediction at the initial period of the software development life cycle remains a critical and important assignment. Defect prediction and correctness leads to the assurance of the quality of software systems and has remained integral to study in the previous years. The quick forecast of imperfect or defective modules in software development can serve the development squad to use the existing assets competently and effectively to provide remarkable software products in a given short timeline. Hitherto, several researchers have industrialized defect prediction models by utilizing statistical and machine learning techniques that are operative and effective approaches to pinpoint the defective modules. Tree family machine learning techniques are well-thought-out to be one of the finest and ordinarily used supervised learning methods. In this study, different tree family machine learning techniques are employed for software defect prediction using ten benchmark datasets. These techniques include Credal Decision Tree (CDT), Cost-Sensitive Decision Forest (CS-Forest), Decision Stump (DS), Forest by Penalizing Attributes (Forest-PA), Hoeffding Tree (HT), Decision Tree (J48), Logistic Model Tree (LMT), Random Forest (RF), Random Tree (RT), and REP-Tree (REP-T). Performance of each technique is evaluated using different measures, i.e., mean absolute error (MAE), relative absolute error (RAE), root mean squared error (RMSE), root relative squared error (RRSE), specificity, precision, recall, F-measure (FM), G-measure (GM), Matthew’s correlation coefficient (MCC), and accuracy. The overall outcomes of this paper suggested RF technique by producing best results in terms of reducing error rates as well as increasing accuracy on five datasets, i.e., AR3, PC1, PC2, PC3, and PC4. The average accuracy achieved by RF is 90.2238%. The comprehensive outcomes of this study can be used as a reference point for other researchers. Any assertion concerning the enhancement in prediction through any new model, technique, or framework can be benchmarked and verified.


Vibration ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 341-356
Author(s):  
Jessada Sresakoolchai ◽  
Sakdirat Kaewunruen

Various techniques have been developed to detect railway defects. One of the popular techniques is machine learning. This unprecedented study applies deep learning, which is a branch of machine learning techniques, to detect and evaluate the severity of rail combined defects. The combined defects in the study are settlement and dipped joint. Features used to detect and evaluate the severity of combined defects are axle box accelerations simulated using a verified rolling stock dynamic behavior simulation called D-Track. A total of 1650 simulations are run to generate numerical data. Deep learning techniques used in the study are deep neural network (DNN), convolutional neural network (CNN), and recurrent neural network (RNN). Simulated data are used in two ways: simplified data and raw data. Simplified data are used to develop the DNN model, while raw data are used to develop the CNN and RNN model. For simplified data, features are extracted from raw data, which are the weight of rolling stock, the speed of rolling stock, and three peak and bottom accelerations from two wheels of rolling stock. In total, there are 14 features used as simplified data for developing the DNN model. For raw data, time-domain accelerations are used directly to develop the CNN and RNN models without processing and data extraction. Hyperparameter tuning is performed to ensure that the performance of each model is optimized. Grid search is used for performing hyperparameter tuning. To detect the combined defects, the study proposes two approaches. The first approach uses one model to detect settlement and dipped joint, and the second approach uses two models to detect settlement and dipped joint separately. The results show that the CNN models of both approaches provide the same accuracy of 99%, so one model is good enough to detect settlement and dipped joint. To evaluate the severity of the combined defects, the study applies classification and regression concepts. Classification is used to evaluate the severity by categorizing defects into light, medium, and severe classes, and regression is used to estimate the size of defects. From the study, the CNN model is suitable for evaluating dipped joint severity with an accuracy of 84% and mean absolute error (MAE) of 1.25 mm, and the RNN model is suitable for evaluating settlement severity with an accuracy of 99% and mean absolute error (MAE) of 1.58 mm.


Author(s):  
G.M. Shafiullah ◽  
Adam Thompson ◽  
Peter J. Wolfs ◽  
A.B.M. Shawkat Ali

Emerging wireless sensor networking (WSN) and modern machine learning techniques have encouraged interest in the development of vehicle health monitoring (VHM) systems that ensure secure and reliable operation of the rail vehicle. The performance of rail vehicles running on railway tracks is governed by the dynamic behaviours of railway bogies especially in the cases of lateral instability and track irregularities. In order to ensure safety and reliability of railway in this chapter, a forecasting model has been developed to investigate vertical acceleration behaviour of railway wagons attached to a moving locomotive using modern machine learning techniques. Initially, an energy-efficient data acquisition model has been proposed for WSN applications using popular learning algorithms. Later, a prediction model has been developed to investigate both front and rear body vertical acceleration behaviour. Different types of models can be built using a uniform platform to evaluate their performances and estimate different attributes’ correlation coefficient (CC), root mean square error (RMSE), mean absolute error (MAE), root relative squared error (RRSE), relative absolute error (RAE) and computation complexity for each of the algorithm. Finally, spectral analysis of front and rear body vertical condition is produced from the predicted data using Fast Fourier Transform (FFT) and used to generate precautionary signals and system status which can be used by the locomotive driver for deciding upon necessary actions.


Sensors ◽  
2019 ◽  
Vol 19 (11) ◽  
pp. 2542 ◽  
Author(s):  
Shiva Sharif Bidabadi ◽  
Tele Tan ◽  
Iain Murray ◽  
Gabriel Lee

The ability to accurately perform human gait evaluation is critical for orthopedic foot and ankle surgeons in tracking the recovery process of their patients. The assessment of gait in an objective and accurate manner can lead to improvement in diagnoses, treatments, and recovery. Currently, visual inspection is the most common clinical method for evaluating the gait, but this method can be subjective and inaccurate. The aim of this study is to evaluate the foot drop condition in an accurate and clinically applicable manner. The gait data were collected from 56 patients suffering from foot drop with L5 origin gathered via a system based on inertial measurement unit sensors at different stages of surgical treatment. Various machine learning (ML) algorithms were applied to categorize the data into specific groups associated with the recovery stages. The results revealed that the random forest algorithm performed best out of the selected ML algorithms, with an overall 84.89% classification accuracy and 0.3785 mean absolute error for regression.


Mathematics ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 1383 ◽  
Author(s):  
Selene Cerna ◽  
Christophe Guyeux ◽  
Guillaume Royer ◽  
Céline Chevallier ◽  
Guillaume Plumerel

Over the years, fire departments have been searching for methods to identify their operational disruptions and establish strategies that allow them to efficiently organize their resources. The present work develops a methodology for breakage calculation and another for predicting disruptions based on machine learning techniques. The main objective is to establish indicators to identify the failures due to the temporal state of the organization in the human and vehicular material. Likewise, by forecasting disruptions, to determine strategies for the deployment or acquisition of the necessary armament. This would allow improving operational resilience and increasing the efficiency of the firemen over time. The methodology was applied to the Departmental Fire and Rescue Doubs (SDIS25) in France. However, it is generic enough to be extended and adapted to other fire departments. Considering a historic of breakdowns of 2017 and 2018, the best predictions of public service breakdowns for the year 2019, presented a root mean squared error of 2.5602 and a mean absolute error of 2.0240 on average with the XGBoost technique.


2018 ◽  
Vol 3 (24) ◽  
pp. eaau2489 ◽  
Author(s):  
I. M. Van Meerbeek ◽  
C. M. De Sa ◽  
R. F. Shepherd

In a step toward soft robot proprioception, and therefore better control, this paper presents an internally illuminated elastomer foam that has been trained to detect its own deformation through machine learning techniques. Optical fibers transmitted light into the foam and simultaneously received diffuse waves from internal reflection. The diffuse reflected light was interpreted by machine learning techniques to predict whether the foam was twisted clockwise, twisted counterclockwise, bent up, or bent down. Machine learning techniques were also used to predict the magnitude of the deformation type. On new data points, the model predicted the type of deformation with 100% accuracy and the magnitude of the deformation with a mean absolute error of 0.06°. This capability may impart soft robots with more complete proprioception, enabling them to be reliably controlled and responsive to external stimuli.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Lasini Wickramasinghe ◽  
Rukmal Weliwatta ◽  
Piyal Ekanayake ◽  
Jeevani Jayasinghe

This paper presents the application of a multiple number of statistical methods and machine learning techniques to model the relationship between rice yield and climate variables of a major region in Sri Lanka, which contributes significantly to the country’s paddy harvest. Rainfall, temperature (minimum and maximum), evaporation, average wind speed (morning and evening), and sunshine hours are the climatic factors considered for modeling. Rice harvest and yield data over the last three decades and monthly climatic data were used to develop the prediction model by applying artificial neural networks (ANNs), support vector machine regression (SVMR), multiple linear regression (MLR), Gaussian process regression (GPR), power regression (PR), and robust regression (RR). The performance of each model was assessed in terms of the mean squared error (MSE), correlation coefficient (R), mean absolute percentage error (MAPE), root mean squared error ratio (RSR), BIAS value, and the Nash number, and it was found that the GPR-based model is the most accurate among them. Climate data collected until early 2019 (Maha season of year 2018) were used to develop the model, and an independent validation was performed by applying data of the Yala season of year 2019. The developed model can be used to forecast the future rice yield with very high accuracy.


Author(s):  
Divya Choudhary ◽  
Siripong Malasri

This paper implements and compares machine learning algorithms to predict the amount of coolant required during transportation of temperature sensitive products. The machine learning models use trip duration, product threshold temperature and ambient temperature as the independent variables to predict the weight of gel packs need to keep the temperature of the product below its threshold temperature value. The weight of the gel packs can be translated to number of gel packs required. Regression using Neural Networks, Support Vector Regression, Gradient Boosted Regression and Elastic Net Regression are compared. The Neural Networks based model performs the best in terms of its mean absolute error value and r-squared values. A Neural Network model is then deployed on as webservice to score allowing for client application to make rest calls to estimate gel pack weights


2021 ◽  
Vol 13 (9) ◽  
pp. 1658
Author(s):  
Marina D’Este ◽  
Mario Elia ◽  
Vincenzo Giannico ◽  
Giuseppina Spano ◽  
Raffaele Lafortezza ◽  
...  

Fine dead fuel load is one of the most significant components of wildfires without which ignition would fail. Several studies have previously investigated 1-h fuel load using standard fuel parameters or site-specific fuel parameters estimated ad hoc for the landscape. On the one hand, these methods have a large margin of error, while on the other their production times and costs are high. In response to this gap, a set of models was developed combining multi-source remote sensing data, field data and machine learning techniques to quantitatively estimate fine dead fuel load and understand its determining factors. Therefore, the objectives of the study were to: (1) estimate 1-h fuel loads using remote sensing predictors and machine learning techniques; (2) evaluate the performance of each machine learning technique compared to traditional linear regression models; (3) assess the importance of each remote sensing predictor; and (4) map the 1-h fuel load in a pilot area of the Apulia region (southern Italy). In pursuit of the above, fine dead fuel load estimation was performed by the integration of field inventory data (251 plots), Synthetic Aperture Radar (SAR, Sentinel-1), optical (Sentinel-2), and Light Detection and Ranging (LIDAR) data applying three different algorithms: Multiple Linear regression (MLR), Random Forest (RF), and Support Vector Machine (SVM). Model performances were evaluated using Root Mean Squared Error (RMSE), Mean Squared Error (MSE), the coefficient of determination (R2) and Pearson’s correlation coefficient (r). The results showed that RF (RMSE: 0.09; MSE: 0.01; r: 0.71; R2: 0.50) had more predictive power compared to the other models, while SVM (RMSE: 0.10; MSE: 0.01; r: 0.63; R2: 0.39) and MLR (RMSE: 0.11; MSE: 0.01; r: 0.63; R2: 0.40) showed similar performances. LIDAR variables (Canopy Height Model and Canopy cover) were more important in fuel estimation than optical and radar variables. In fact, the results highlighted a positive relationship between 1-h fuel load and the presence of the tree component. Conversely, the geomorphological variables appeared to have lower predictive power. Overall, the 1-h fuel load map developed by the RF model can be a valuable tool to support decision making and can be used in regional wildfire risk management.


Sign in / Sign up

Export Citation Format

Share Document