scholarly journals A Novel Learning-Based Binarization Scheme Selector for Swarm Algorithms Solving Combinatorial Problems

Mathematics ◽  
2021 ◽  
Vol 9 (22) ◽  
pp. 2887
Author(s):  
José Lemus-Romani ◽  
Marcelo Becerra-Rozas ◽  
Broderick Crawford ◽  
Ricardo Soto ◽  
Felipe Cisternas-Caneo ◽  
...  

Currently, industry is undergoing an exponential increase in binary-based combinatorial problems. In this regard, metaheuristics have been a common trend in the field in order to design approaches to successfully solve them. Thus, a well-known strategy includes the employment of continuous swarm-based algorithms transformed to perform in binary environments. In this work, we propose a hybrid approach that contains discrete smartly adapted population-based strategies to efficiently tackle binary-based problems. The proposed approach employs a reinforcement learning technique, known as SARSA (State–Action–Reward–State–Action), in order to utilize knowledge based on the run time. In order to test the viability and competitiveness of our proposal, we compare discrete state-of-the-art algorithms smartly assisted by SARSA. Finally, we illustrate interesting results where the proposed hybrid outperforms other approaches, thus, providing a novel option to tackle these types of problems in industry.

2021 ◽  
pp. 1-24
Author(s):  
S. C. Maree ◽  
T. Alderliesten ◽  
P. A. N. Bosman

Abstract Domination-based multi-objective (MO) evolutionary algorithms (EAs) are today arguably the most frequently used type of MOEA. These methods however stagnate when the majority of the population becomes non-dominated, preventing further convergence to the Pareto set. Hypervolume-based MO optimization has shown promising results to overcome this. Direct use of the hypervolume however results in no selection pressure for dominated solutions. The recently introduced Sofomore framework overcomes this by solving multiple interleaved single-objective dynamic problems that iteratively improve a single approximation set, based on the uncrowded hypervolume improvement (UHVI). It thereby however loses many advantages of population-based MO optimization, such as handling multimodality. Here, we reformulate the UHVI as a quality measure for approximation sets, called the uncrowded hypervolume (UHV), which can be used to directly solve MO optimization problems with a single-objective optimizer. We use the state-of-the-art gene-pool optimal mixing evolutionary algorithm (GOMEA) that is capable of efficiently exploiting the intrinsically available greybox properties of this problem. The resulting algorithm, UHV-GOMEA, is compared to Sofomore equipped with GOMEA, and the domination-based MO-GOMEA. In doing so, we investigate in which scenarios either domination-based or hypervolume-based methods are preferred. Finally, we construct a simple hybrid approach that combines MO-GOMEA with UHV-GOMEA and outperforms both.


2021 ◽  
Vol 12 (1) ◽  
pp. 98-114
Author(s):  
Imène Ait Abderrahim ◽  
Lakhdar Loukil

Metaheuristics algorithms are competitive methods for solving assignment problems. This paper reports on nature inspired algorithms approach which is the particle swarm optimization (PSO) method hybrid with a local search (LS) algorithm for solving the quadratic three-dimensional assignment problem (Q3AP) where population-based metaheuristics like PSO or GA failed to solve. Q3AP is one of the combinatorial problems proven to be NP-Hard. It is an extension of the quadratic assignment problem (QAP). Solving the Q3AP consists of finding an optimal symbol mapping over two vectors, whereas solving the QAP consists of finding an optimal symbol mapping over one vector only. The authors tested the proposed hybrid algorithm on many instances where some of them haven't been used in the previous works for solving Q3AP. The results show that compared with the PSO algorithm and the genetic algorithm (GA), the proposed hybrid PSO-ILS(TS) algorithm is promising for finding the optimal/best known solution.


1986 ◽  
Author(s):  
Simon S. Kim ◽  
Mary Lou Maher ◽  
Raymond E. Levitt ◽  
Martin F. Rooney ◽  
Thomas J. Siller

Author(s):  
Inzamam Mashood Nasir ◽  
Muhammad Rashid ◽  
Jamal Hussain Shah ◽  
Muhammad Sharif ◽  
Muhammad Yahiya Haider Awan ◽  
...  

Background: Breast cancer is considered as the most perilous sickness among females worldwide and the ratio of new cases is expanding yearly. Many researchers have proposed efficient algorithms to diagnose breast cancer at early stages, which have increased the efficiency and performance by utilizing the learned features of gold standard histopathological images. Objective: Most of these systems have either used traditional handcrafted features or deep features which had a lot of noise and redundancy, which ultimately decrease the performance of the system. Methods: A hybrid approach is proposed by fusing and optimizing the properties of handcrafted and deep features to classify the breast cancer images. HOG and LBP features are serially fused with pretrained models VGG19 and InceptionV3. PCR and ICR are used to evaluate the classification performance of proposed method. Results: The method concentrates on histopathological images to classify the breast cancer. The performance is compared with state-of-the-art techniques, where an overall patient-level accuracy of 97.2% and image-level accuracy of 96.7% is recorded. Conclusion: The proposed hybrid method achieves the best performance as compared to previous methods and it can be used for the intelligent healthcare systems and early breast cancer detection.


2020 ◽  
Vol 15 (4) ◽  
pp. 475-491
Author(s):  
M. Cristina Amoretti ◽  
Marcello Frixione

Wines with geographical indication can be classified and represented by such features as designations of origin, producers, vintage years, alcoholic strength, and grape varieties; these features allow us to define wines in terms of a set of necessary and/or sufficient conditions. However, wines can also be identified by other characteristics, involving their look, smell, and taste; in this case, it is hard to define wines in terms of necessary and/or sufficient conditions, as wine concepts exhibit typicality effects. This is a setback for the design of computer science ontologies aiming to represent wine concepts, since knowledge representation formalisms commonly adopted in this field do not allow for the representation of concepts in terms of typical traits. To solve this problem, we propose to adopt a hybrid approach in which ontology-oriented formalisms are combined with a geometric representation of knowledge based on conceptual spaces. As in conceptual spaces, concepts are identified in terms of a number of quality dimensions. In order to determine those relevant for wine representation, we use the terminology developed by the Italian Association of Sommeliers to describe wines. This will allow us to understand typicality effects about wines, determine prototypes and better exemplars, and measure the degree of similarity between different wines.


Sensors ◽  
2019 ◽  
Vol 19 (2) ◽  
pp. 230 ◽  
Author(s):  
Slavisa Tomic ◽  
Marko Beko

This work addresses the problem of target localization in adverse non-line-of-sight (NLOS) environments by using received signal strength (RSS) and time of arrival (TOA) measurements. It is inspired by a recently published work in which authors discuss about a critical distance below and above which employing combined RSS-TOA measurements is inferior to employing RSS-only and TOA-only measurements, respectively. Here, we revise state-of-the-art estimators for the considered target localization problem and study their performance against their counterparts that employ each individual measurement exclusively. It is shown that the hybrid approach is not the best one by default. Thus, we propose a simple heuristic approach to choose the best measurement for each link, and we show that it can enhance the performance of an estimator. The new approach implicitly relies on the concept of the critical distance, but does not assume certain link parameters as given. Our simulations corroborate with findings available in the literature for line-of-sight (LOS) to a certain extent, but they indicate that more work is required for NLOS environments. Moreover, they show that the heuristic approach works well, matching or even improving the performance of the best fixed choice in all considered scenarios.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Kuan-Cheng Lin ◽  
Sih-Yang Chen ◽  
Jason C. Hung

Rapid advances in information and communication technology have made ubiquitous computing and the Internet of Things popular and practicable. These applications create enormous volumes of data, which are available for analysis and classification as an aid to decision-making. Among the classification methods used to deal with big data, feature selection has proven particularly effective. One common approach involves searching through a subset of the features that are the most relevant to the topic or represent the most accurate description of the dataset. Unfortunately, searching through this kind of subset is a combinatorial problem that can be very time consuming. Meaheuristic algorithms are commonly used to facilitate the selection of features. The artificial fish swarm algorithm (AFSA) employs the intelligence underlying fish swarming behavior as a means to overcome optimization of combinatorial problems. AFSA has proven highly successful in a diversity of applications; however, there remain shortcomings, such as the likelihood of falling into a local optimum and a lack of multiplicity. This study proposes a modified AFSA (MAFSA) to improve feature selection and parameter optimization for support vector machine classifiers. Experiment results demonstrate the superiority of MAFSA in classification accuracy using subsets with fewer features for given UCI datasets, compared to the original FASA.


Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2649 ◽  
Author(s):  
Cassim Ladha ◽  
Christy Hoffman

The ability to objectively measure episodes of rest has clear application for assessing health and well-being. Accelerometers afford a sensitive platform for doing so and have demonstrated their use in many human-based trials and interventions. Current state of the art methods for predicting sleep from accelerometer signals are either based on posture or low movement. While both have proven to be sensitive in humans, the methods do not directly transfer well to dogs, possibly because dogs are commonly alert but physically inactive when recumbent. In this paper, we combine a previously validated low-movement algorithm developed for humans and a posture-based algorithm developed for dogs. The hybrid approach was tested on 12 healthy dogs of varying breeds and sizes in their homes. The approach predicted state of rest with a mean accuracy of 0.86 (SD = 0.08). Furthermore, when a dog was in a resting state, the method was able to distinguish between head up and head down posture with a mean accuracy of 0.90 (SD = 0.08). This approach can be applied in a variety of contexts to assess how factors, such as changes in housing conditions or medication, may influence a dog’s resting patterns.


2021 ◽  
Vol 12 (4) ◽  
pp. 98-116
Author(s):  
Noureddine Boukhari ◽  
Fatima Debbat ◽  
Nicolas Monmarché ◽  
Mohamed Slimane

Evolution strategies (ES) are a family of strong stochastic methods for global optimization and have proved their capability in avoiding local optima more than other optimization methods. Many researchers have investigated different versions of the original evolution strategy with good results in a variety of optimization problems. However, the convergence rate of the algorithm to the global optimum stays asymptotic. In order to accelerate the convergence rate, a hybrid approach is proposed using the nonlinear simplex method (Nelder-Mead) and an adaptive scheme to control the local search application, and the authors demonstrate that such combination yields significantly better convergence. The new proposed method has been tested on 15 complex benchmark functions and applied to the bi-objective portfolio optimization problem and compared with other state-of-the-art techniques. Experimental results show that the performance is improved by this hybridization in terms of solution eminence and strong convergence.


2018 ◽  
Vol 8 (10) ◽  
pp. 1945 ◽  
Author(s):  
Tarik Eltaeib ◽  
Ausif Mahmood

Differential evolution (DE) has been extensively used in optimization studies since its development in 1995 because of its reputation as an effective global optimizer. DE is a population-based metaheuristic technique that develops numerical vectors to solve optimization problems. DE strategies have a significant impact on DE performance and play a vital role in achieving stochastic global optimization. However, DE is highly dependent on the control parameters involved. In practice, the fine-tuning of these parameters is not always easy. Here, we discuss the improvements and developments that have been made to DE algorithms. In particular, we present a state-of-the-art survey of the literature on DE and its recent advances, such as the development of adaptive, self-adaptive and hybrid techniques.


Sign in / Sign up

Export Citation Format

Share Document