scholarly journals Hydrodynamic and Acoustic Performance Analysis of Marine Propellers by Combination of Panel Method and FW-H Equations

2019 ◽  
Vol 24 (3) ◽  
pp. 81 ◽  
Author(s):  
Abouzar Ebrahimi ◽  
Mohammad Saeed Seif ◽  
Ali Nouri-Borujerdi

The noise emitted by ships is one of the most important noises in the ocean, and the propeller noise is one of the major components of the ship noise. Measuring the propeller noise in a laboratory, despite the high accuracy and good reliability, has high costs and is very time-consuming. For this reason, the calculation of propeller noise using numerical methods has been considered in recent years. In this study, the noise of a propeller in non-cavitating conditions is calculated by the combination of the panel method (boundary element method) and solving the Ffowcs Williams-Hawkings (FW-H) equations. In this study, a panel method code is developed, and the results are validated by the experimental results of the model tests carried out in the cavitation tunnel of the Sharif University of Technology. Software for numerical calculation of propeller noise, based on FW-H equations, is also developed and the results are validated by experimental results. This study shows that the results of the panel method code have good agreement with experimental results, and that the maximum error of this code for the thrust and torque coefficients is 4% and 7%, respectively. The results of the FW-H noise code are also in good agreement with the experimental data.

2014 ◽  
Vol 13 (2) ◽  
pp. 41
Author(s):  
B. I. Favacho ◽  
J. R. P. Vaz ◽  
A. L. A. Mesquita

The navigation in Amazon region is very important due to the length of navigable rivers and the lack of alternative road network, as well as being a form of transportation costless for the flow of agricultural and manufacturing production. This kind of transportation present social, economic and technological importance for this region. Thus, this work objective to develop a mathematical approach for the marine propellers design, using a formulation for chord and pitch angle optimization, taken into account the equations of mass, energy and momentum balance for the theoretical calculation of thrust and torque relationships on an annular control volume, ie, the mathematical model is based in the Blade Element Momentum (BEM) theory. The proposed hydrodynamic model present low computational cost and it is easy to implement. The results are compared with classical Glauert's theory and the experimental data of the Wageningen B3-50 propeller, presenting good agreement.


Symmetry ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 196 ◽  
Author(s):  
Chen-Wei Chen ◽  
Ming Li

In this paper, the hydrodynamic performance of lift-body marine propellers and hydrofoils is analyzed using a B-spline potential-based panel method. The potential panel method, based on a combination of two singularity elements, is proposed, and a B-spline curve interpolation method is integrated with the interpolation of the corner points and collocation points to ensure accuracy and continuity of the interpolation points. The B-spline interpolation is used for the distribution of the singularity elements on a complex surface to ensure continuity of the results for the intensity of the singular points and to reduce the possibility of abrupt changes in the surface velocity potential to a certain extent. A conventional cubic spline method is also implemented as a comparison of the proposed method. The surface pressure coefficient and lift the performance of 2-D and 3-D hydrofoils of sweepback and dihedral type with different aspect ratios are analyzed to verify the rationality and feasibility of the present method. The surface pressure distribution and coefficients of thrust and torque are calculated for different marine propellers and compared with the experimental data. A parametric study on the propeller wake model was carried out. The validated results show that it is practical to improve the accuracy of hydrodynamic performance prediction using the improved potential panel method proposed.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
J. Baltazar ◽  
J. A. C. Falcão de Campos ◽  
J. Bosschers

This paper discusses several modelling aspects that are important for the performance predictions of a ducted propulsor with a low-order Panel Method. The aspects discussed are the alignment of the wake geometry, the influence of the duct boundary layer on the wake pitch, and the influence of a transpiration velocity through the gap. The analysis is carried out for propeller Ka4-70 operating without and inside a modified duct 19A, in which the rounded trailing edge is replaced by a sharp trailing edge. Experimental data for the thrust and torque are used to validate the numerical results. The pitch of the tip vortex is found to have a strong influence on the propeller and duct loads. A good agreement with the measurements is achieved when the wake alignment is corrected for the presence of the duct boundary layer.


2014 ◽  
Vol 908 ◽  
pp. 249-255
Author(s):  
Chao Li ◽  
Zhi Xin Chen

With the 42m trawler as object, an ordinary propeller and a ducted propeller are designed and their open water hydrodynamic performance are simulated by using CFD software. The computed results and experimental results of ducted propeller are in good agreement, which verified the reliability of numerical calculation. Then the computed results of ordinary propeller and ducted propeller are compared with each other, it is found that the thrust and torque of ducted propeller is bigger than ordinary propeller in trawling. This article also discusses the pressure distribution of their blade and the reason why ducted propeller has a better hydrodynamic performance is studied.


2019 ◽  
Vol 22 (2) ◽  
pp. 88-93
Author(s):  
Hamed Khanger Mina ◽  
Waleed K. Al-Ashtrai

This paper studies the effect of contact areas on the transient response of mechanical structures. Precisely, it investigates replacing the ordinary beam of a structure by two beams of half the thickness, which are joined by bolts. The response of these beams is controlled by adjusting the tightening of the connecting bolts and hence changing the magnitude of the induced frictional force between the two beams which affect the beams damping capacity. A cantilever of two beams joined together by bolts has been investigated numerically and experimentally. The numerical analysis was performed using ANSYS-Workbench version 17.2. A good agreement between the numerical and experimental results has been obtained. In general, results showed that the two beams vibrate independently when the bolts were loosed and the structure stiffness is about 20 N/m and the damping ratio is about 0.008. With increasing the bolts tightening, the stiffness and the damping ratio of the structure were also increased till they reach their maximum values when the tightening force equals to 8330 N, where the structure now has stiffness equals to 88 N/m and the damping ratio is about 0.062. Beyond this force value, increasing the bolts tightening has no effect on stiffness of the structure while the damping ratio is decreased until it returned to 0.008 when the bolts tightening becomes immense and the beams behave as one beam of double thickness.


1996 ◽  
Vol 05 (04) ◽  
pp. 653-670 ◽  
Author(s):  
CÉLINE FIORINI ◽  
JEAN-MICHEL NUNZI ◽  
FABRICE CHARRA ◽  
IFOR D.W. SAMUEL ◽  
JOSEPH ZYSS

An original poling method using purely optical means and based on a dual-frequency interference process is presented. We show that the coherent superposition of two beams at fundamental and second-harmonic frequencies results in a polar field with an irreducible rotational spectrum containing both a vector and an octupolar component. This enables the method to be applied even to molecules without a permanent dipole such as octupolar molecules. After a theoretical analysis of the process, we describe different experiments aiming at light-induced noncentrosymmetry performed respectively on one-dimensional Disperse Red 1 and octupolar Ethyl Violet molecules. Macroscopic octupolar patterning of the induced order is demonstrated in both transient and permanent regimes. Experimental results show good agreement with theory.


2021 ◽  
Vol 5 (3) ◽  
pp. 32
Author(s):  
Benedikt Mutsch ◽  
Peter Walzel ◽  
Christian J. Kähler

The droplet deformation in dispersing units of high-pressure homogenizers (HPH) is examined experimentally and numerically. Due to the small size of common homogenizer nozzles, the visual analysis of the transient droplet generation is usually not possible. Therefore, a scaled setup was used. The droplet deformation was determined quantitatively by using a shadow imaging technique. It is shown that the influence of transient stresses on the droplets caused by laminar extensional flow upstream the orifice is highly relevant for the droplet breakup behind the nozzle. Classical approaches based on an equilibrium assumption on the other side are not adequate to explain the observed droplet distributions. Based on the experimental results, a relationship from the literature with numerical simulations adopting different models are used to determine the transient droplet deformation during transition through orifices. It is shown that numerical and experimental results are in fairly good agreement at limited settings. It can be concluded that a scaled apparatus is well suited to estimate the transient droplet formation up to the outlet of the orifice.


2012 ◽  
Vol 134 (10) ◽  
Author(s):  
Dan Igra ◽  
Ozer Igra ◽  
Lazhar Houas ◽  
Georges Jourdan

Simulations of experimental results appearing in Jourdan et al. (2007, “Drag Coefficient of a Sphere in a Non-Stationary Flow: New Results,”Proc. R. Soc. London, Ser. A, 463, pp. 3323–3345) regarding acceleration of a sphere by the postshock flow were conducted in order to find the contribution of the various parameters affecting the sphere drag force. Based on the good agreement found between present simulations and experimental findings, it is concluded that the proposed simulation scheme could safely be used for evaluating the sphere’s motion in the postshock flow.


2007 ◽  
Vol 353-358 ◽  
pp. 1229-1232
Author(s):  
Z.N. Yin ◽  
L.F. Fan ◽  
Tie Jun Wang

Dynamic Mechanical Analysis (DMA) and static relaxation tests are carried out to study the viscoelastic deformation of PC/ABS alloy with blending ratio of PC to ABS being 50/50. A modified approach is developed to calculate the relaxation modulus of PC/ABS alloy from the DMA experimental results of storage and loss moduli. Comparison of the results obtained from DMA and static relaxation tests is presented and good agreement is found.


1990 ◽  
Vol 195 ◽  
Author(s):  
S. Berthier ◽  
K. Driss-Khodja

ABSTRACTIn order to take into account the actual morphology of the inhomogeneous media, we have developed, effective medium models based on a 2D and 3D position space renormalization /1,2/. These models predict the dipolar resonance and the percolation transition with critical exponents in good agreement with theoretical values and fairly reproduce most of the experimental results, whatever the concentration is. Further more, this allows a valuable comparison of the predictions of our models when applied on different lattices like real digitized TEM of cermet films or randomly occupied lattices.


Sign in / Sign up

Export Citation Format

Share Document