scholarly journals Omega-3 Fatty Acids and Skeletal Muscle Health

Marine Drugs ◽  
2015 ◽  
Vol 13 (11) ◽  
pp. 6977-7004 ◽  
Author(s):  
Stewart Jeromson ◽  
Iain Gallagher ◽  
Stuart Galloway ◽  
D. Hamilton
Nutrients ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 223
Author(s):  
Kassandra Lanchais ◽  
Frederic Capel ◽  
Anne Tournadre

Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by a high prevalence of death due to cardiometabolic diseases. As observed during the aging process, several comorbidities, such as cardiovascular disorders (CVD), insulin resistance, metabolic syndrome and sarcopenia, are frequently associated to RA. These abnormalities could be closely linked to alterations in lipid metabolism. Indeed, RA patients exhibit a lipid paradox, defined by reduced levels of total, low-density lipoprotein (LDL) and high-density lipoprotein (HDL) cholesterol whereas the CVD risk is increased. Moreover, the accumulation of toxic lipid mediators (i.e., lipotoxicity) in skeletal muscles can induce mitochondrial dysfunctions and insulin resistance, which are both crucial determinants of CVD and sarcopenia. The prevention or reversion of these biological perturbations in RA patients could contribute to the maintenance of muscle health and thus be protective against the increased risk for cardiometabolic diseases, dysmobility and mortality. Yet, several studies have shown that omega 3 fatty acids (FA) could prevent the development of RA, improve muscle metabolism and limit muscle atrophy in obese and insulin-resistant subjects. Thereby, dietary supplementation with omega 3 FA should be a promising strategy to counteract muscle lipotoxicity and for the prevention of comorbidities in RA patients.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Martha Belury ◽  
Rachel Cole ◽  
Rebecca Andridge ◽  
Qing Xie ◽  
Ashleigh Keiter ◽  
...  

Abstract Objectives Cancer contributes to adverse changes in body composition that may increase risk of cardiometabolic diseases. Skeletal muscle is a main driver of cardiometabolic health. We hypothesize that higher intake of long chain omega-3 polyunsaturated fatty acids (LCn3PUFAs) is associated with muscle health. This study evaluates whether LCn3PUFA exposure assessed in diet and in blood is associated with markers of muscle health in women with breast cancer. Methods This is a cross-sectional analysis evaluating LCn3PUFA exposure and markers of muscle health in women (N = 150) prior to treatment for breast cancer. Exposure to LCn3PUFAs was assessed by a diet history questionnaire (DHQ), a question specifically about supplement usage and biomarker of LCn3PUFAs in red blood cells (RBC). Body composition were measured at the same visit using dual x-ray absorptiometry. Linear regression models were used to test for associations. Results 13% (N = 19) of women reported using fish oil supplements (e.g., Supplement Users) and had significantly higher levels of RBC LCn3PUFAs than Supplement Non-users. In Supplement Non-users, there was a positive association between reported dietary exposure by DHQ and RBC LCn3PUFA levels. The n3 index (e.g., sum of RBC EPA + DHA) and DHA (22:6n3) were positively associated with appendicular lean mass/BMI. There were no significant correlations between RBC LCn3PUFAs with grip strength and or other measurements of body composition. Conclusions As a biomarker of intake, RBC LCn3PUFAs are positively associated with appendicular lean mass, a measure of skeletal muscle mass. A future study should prospectively evaluate whether higher LCn3PUFA exposure (as measured in blood) is associated with maintaining better muscle health during and following cancer treatment. Funding Sources Funding was provided by the National Cattleman's Beef Association, NIH (JKG) CA186720, Ohio Agriculture Research and Development Center and the Carol S. Kennedy Professorship.


2013 ◽  
Vol 91 (6) ◽  
pp. 459-468 ◽  
Author(s):  
Cameron McDonald ◽  
Judy Bauer ◽  
Sandra Capra

Myopenia or muscle wasting due to ageing, chronic disease, and various medical interventions has been associated with increased mortality, morbidity, and poorer physical function. Attempts through nutrient and exercise interventions have been made to prevent this deterioration. In addition, while a measure of lean body mass (LBM) is associated with health outcomes, LBM function may be a better prognostic tool. Long-chain omega-3 fatty acids (LCn-3s) are nutrients that may mitigate LBM losses in noncancer populations. The purpose of this review is to determine whether LCn-3s have a role in LBM sparing in noncancer populations, to establish a minimum dose and duration of LCn-3s that will result in LBM change, and to summarise the potential effects of LCn-3s on LBM function when combined with an anabolic stimulus. Overall, in noncancer populations, LCn-3s have limited utility in sparing LBM during energy balance, energy restriction, or in conjunction with aerobic exercise. Further investigations are required to determine the appropriate dose and duration of LCn-3s for optimal LBM function. Finally, compelling evidence exists for LCn-3s in conjunction with an anabolic stimulus to improve LBM function and quality. Functionality of LBM tissue is an important outcome for population health, and LCn-3s show some promise, albeit pending further study.


2016 ◽  
Vol 9 ◽  
pp. NMI.S27481 ◽  
Author(s):  
Amritpal S. Bhullar ◽  
Charles T. Putman ◽  
Vera C. Mazurak

Skeletal muscle loss is associated with aging as well as pathological conditions. Satellite cells (SCs) play an important role in muscle regeneration. Omega-3 fatty acids are widely studied in a variety of muscle wasting diseases; however, little is known about their impact on skeletal muscle regeneration. The aim of this review is to evaluate studies examining the effect of omega-3 fatty acids, α-linolenic acid, eicosapentaenoic acid, and docosahexaenoic acid on the regulation of SC proliferation and differentiation. This review highlights mechanisms by which omega-3 fatty acids may modulate the myogenic program of the stem cell population within skeletal muscles and identifies considerations for future studies. It is proposed that minimally three myogenic transcriptional regulatory factors, paired box 7 (Pax7), myogenic differentiation 1 protein, and myogenin, should be measured to confirm the stage of SCs within the myogenic program affected by omega-3 fatty acids.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 314-315
Author(s):  
Lillian L Okamoto ◽  
Caleb C Reichhardt ◽  
Sierra Lopez ◽  
Anthony F Alberto ◽  
Reganne K Briggs ◽  
...  

Abstract Omega-3 fatty acids have immunomodulatory and anti-inflammatory effects. The objective of this project was to determine the effects of fish oil, a source of omega-3 fatty acids, on genes involved in inflammation and growth of skeletal muscle tissue after an LPS challenge. Male Landrace-New Hampshire weaned piglets (BW 8.21±0.83 kg) were used in a randomized complete block design and assigned to two treatments: 1) basal diet (n=7) and 2) basal diet plus 3% fish oil added (n = 7). Treatments were fed for 35 d. On d 34, an LPS challenge was performed and 24 h later, piglets were euthanized and skeletal muscle samples were collected from the longissimus lumborum and biceps femoris. Total mRNA was isolated and markers of inflammation [cyclophilin (Cyclo), nuclear factor kappa beta subunit-1 (NF-kB), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6)], skeletal muscle growth [paired box transcription factor-7 (Pax7), myogenic factor-5 (Myf5), myoblast determination factor-1 (MyoD), myogenin (MyoG)] and adipose growth (peroxisome proliferator activated receptor (PPARy), leptin, and adiponectin) were analyzed. Cyclophilin abundance was increased (P = 0.03) in fish-oil piglets compared to control piglets. Other markers of inflammation (TNF-α, IL-6, NF-kB) were not affected (P > 0.05) by fish-oil supplementation. Abundance of Myf5 was lower (P = 0.03) in fish oil piglets than control piglets. Other myogenic regulatory factors (Pax7, MyoD, MyoG) were not (P > 0.05) altered by treatment. Abundance of PPARy, leptin or adiponectin was not affected (P > 0.05) by fish-oil supplementation. Muscle location influenced (P < 0.01) abundance of leptin and adiponectin, with abundance being higher in the biceps femoris than in the longissimus lumborum. No other genes analyzed were impacted by muscle location (P > 0.05). Our findings suggest that supplementation of omega-3 fatty acids via fish-oil may affect the inflammatory response and skeletal muscle growth. Further research is needed to evaluate the impact of these results on animal production.


2015 ◽  
Vol 21 (1) ◽  
pp. 87-95 ◽  
Author(s):  
E. P. da Silva ◽  
R. T. Nachbar ◽  
A. C. Levada-Pires ◽  
S. M. Hirabara ◽  
R. H. Lambertucci

1992 ◽  
Vol 286 (2) ◽  
pp. 405-411 ◽  
Author(s):  
P S Sohal ◽  
V E Baracos ◽  
M T Clandinin

The present study was designed to determine if dietary-fat-induced alterations in the fatty acid composition of skeletal-muscle lipid alters insulin-dependent and basal muscle metabolism, including glucose and amino acid transport, prostaglandin (PG) synthesis and protein turnover. Rats were fed on high-fat semi-purified diets providing 19% or 1% omega 3 fatty acids in the form of fish oil, for 6 weeks. After 3 weeks, half of the rats were made diabetic by a single injection of streptozotocin (50 mg/kg body wt.). After a further 3 weeks, contralateral epitrochlearis and extensor digitorum longus (EDL) muscles from each rat were incubated in vitro. High levels of dietary omega 3 fatty acids decreased PGE2 and PGF2 alpha synthesis in EDL and epitrochlearis muscle (P less than 0.0001). Diabetes and insulin had no effect on PG synthesis. Diet did not alter basal glucose or amino acid transport in EDL muscle from healthy or diabetic rats. Insulin increased glucose and amino acid transport (P less than 0.0001); the increase in glucose transport by insulin was significantly greater in muscles of rats fed on high levels of omega 3 fatty acids (P less than 0.05). Epitrochlearis from rats fed on high levels of omega 3 fatty acids showed decreased net protein degradation in the presence and absence of insulin, owing to decreased rates of protein degradation and synthesis. The data suggest that high levels of dietary omega 3 fatty acids that alter muscle membrane composition also result in alterations in glucose transport and the metabolism of muscle protein.


2014 ◽  
Vol 127 (5) ◽  
pp. 315-322 ◽  
Author(s):  
Francis B. Stephens ◽  
Buddhike Mendis ◽  
Chris E. Shannon ◽  
Scott Cooper ◽  
Catharine A. Ortori ◽  
...  

Intravenous infusion of lipid into healthy males caused insulin resistance. Addition of fish oil omega-3 polyunsaturated fatty acids to the lipid infusion partially prevented the insulin resistance. This effect was not due to differences in muscle acylcarnitine content.


2020 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Emily J. Ferguson ◽  
Joel W. Seigel ◽  
Chris McGlory

Sign in / Sign up

Export Citation Format

Share Document