scholarly journals Phomaketide A Inhibits Lymphangiogenesis in Human Lymphatic Endothelial Cells

Marine Drugs ◽  
2019 ◽  
Vol 17 (4) ◽  
pp. 215 ◽  
Author(s):  
Huai-Ching Tai ◽  
Tzong-Huei Lee ◽  
Chih-Hsin Tang ◽  
Lei-Po Chen ◽  
Wei-Cheng Chen ◽  
...  

Lymphangiogenesis is an important biological process associated with cancer metastasis. The development of new drugs that block lymphangiogenesis represents a promising therapeutic strategy. Marine fungus-derived compound phomaketide A, isolated from the fermented broth of Phoma sp. NTOU4195, has been reported to exhibit anti-angiogenic and anti-inflammatory effects. However, its anti-lymphangiogenic activity has not been clarified to date. In this study, we showed that phomaketide A inhibited cell growth, migration, and tube formation of lymphatic endothelial cells (LECs) without an evidence of cytotoxicity. Mechanistic investigations revealed that phomaketide A reduced LECs-induced lymphangiogenesis via vascular endothelial growth factor receptor-3 (VEGFR-3), protein kinase Cδ (PKCδ), and endothelial nitric oxide synthase (eNOS) signalings. Furthermore, human proteome array analysis indicated that phomaketide A significantly enhanced the protein levels of various protease inhibitors, including cystatin A, serpin B6, tissue factor pathway inhibitor (TFPI), and tissue inhibitor matrix metalloproteinase 1 (TIMP-1). Importantly, phomaketide A impeded tumor growth and lymphangiogenesis by decreasing the expression of LYVE-1, a specific marker for lymphatic vessels, in tumor xenograft animal model. These results suggest that phomaketide A may impair lymphangiogenesis by suppressing VEGFR-3, PKCδ, and eNOS signaling cascades, while simultaneously activating protease inhibitors in human LECs. We document for the first time that phomaketide A inhibits lymphangiogenesis both in vitro and in vivo, which suggests that this natural product could potentially treat cancer metastasis.

2018 ◽  
Vol 23 (3) ◽  
pp. 201-211 ◽  
Author(s):  
Orawin Prangsaengtong ◽  
Phatcharida Jantaree ◽  
Kriengsak Lirdprapamongkol ◽  
Lukana Ngiwsara ◽  
Jisnuson Svasti ◽  
...  

Lymphangiogenesis is the process of new vessel formation from pre-existing lymphatic vessels. The process mainly involves cell adhesion, migration, and tubule formation of lymphatic endothelial cells. Tumor-induced lymphangiogenesis is an important factor contributing to promotion of tumor growth and cancer metastasis via the lymphatic system. Finding the non-toxic agents that can prevent or inhibit lymphangiogenesis may lead to blocking of lymphatic metastasis. Recently, aspirin, a non-steroidal anti-inflammatory drug (NSAID), has been reported to inhibit in vivo lymphangiogenesis in tumor and incision wound models, but the mechanisms of actions of aspirin on anti-lymphangiogenesis have been less explored. In this study, we aim to explore the mechanism underlying the anti-lymphangiogenic effects of aspirin in primary human dermal lymphatic microvascular endothelial (HMVEC-dLy) cells in vitro. Pretreatment of aspirin at non-toxic dose 0.3 mM significantly suppressed in vitro cord formation, adhesion, and the migration abilities of the HMVEC-dLy cells. Western blotting analysis indicated that aspirin decreased expression of vascular cell adhesion molecule-1 (VCAM-1), at both protein and mRNA levels, and these correlated with the reduction of NF-κB p65 phosphorylation. By using NF-κB inhibitor (BAY-11-7085) and VCAM-1 siRNA, we showed that VCAM-1 expression is downstream of NF-κB activation, and this NF-κB/VCAM-1 signaling pathway controls cord formation, adhesion, and the migration abilities of the HMVEC-dLy cells. In summary, we demonstrate the potential of aspirin as an anti-lymphangiogenic agent, and elucidate its mechanism of action.


1997 ◽  
Vol 248 (4) ◽  
pp. 490-497 ◽  
Author(s):  
Carla Marchetti ◽  
Andrea Casasco ◽  
Amalia Di Nucci ◽  
Marcella Reguzzoni ◽  
Simone Rosso ◽  
...  

Blood ◽  
2010 ◽  
Vol 115 (4) ◽  
pp. 906-909 ◽  
Author(s):  
Camilla Norrmén ◽  
Wouter Vandevelde ◽  
Annelii Ny ◽  
Pipsa Saharinen ◽  
Massimiliano Gentile ◽  
...  

Abstract The lymphatic vasculature is important for the regulation of tissue fluid homeostasis, immune response, and lipid absorption, and the development of in vitro models should allow for a better understanding of the mechanisms regulating lymphatic vascular growth, repair, and function. Here we report isolation and characterization of lymphatic endothelial cells from human intestine and show that intestinal lymphatic endothelial cells have a related but distinct gene expression profile from human dermal lymphatic endothelial cells. Furthermore, we identify liprin β1, a member of the family of LAR transmembrane tyrosine phosphatase-interacting proteins, as highly expressed in intestinal lymphatic endothelial cells in vitro and lymphatic vasculature in vivo, and show that it plays an important role in the maintenance of lymphatic vessel integrity in Xenopus tadpoles.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chenhao Tong ◽  
Yali Wang ◽  
Jiandong Li ◽  
Wenda Cen ◽  
Weiguang Zhang ◽  
...  

AbstractGallbladder cancer is the most common malignant tumor of the biliary system and is characterized by difficulty to diagnose in early stages, a high degree of malignancy, and poor prognosis. Finding new drugs may improve the prognosis for this dismal cancer. Herein, we investigated the potential application of pterostilbene (PTS) against gallbladder cancer in vivo and in vitro. PTS potently inhibited cell proliferation, migration and invasion of gallbladder cancer cells. Moreover, PTS also had a function of inducing apoptosis in vitro. Meanwhile, PTS reversed EMT with a correlated inhibition of PI3K/Akt activation. Tumor xenograft models showed that PTS inhibited tumor growth and had low toxicity in vivo, which were consistent with the in vitro data. These findings indicate that PTS arrests cell growth through inhibition of PI3K/AKT signaling and is a potential drug for the therapy of gallbladder cancer.


2007 ◽  
Vol 28 (2) ◽  
pp. 179-192 ◽  
Author(s):  
Nikolaus Wick ◽  
Pipsa Saharinen ◽  
Juha Saharinen ◽  
Elisabeth Gurnhofer ◽  
Carl W. Steiner ◽  
...  

The in vivo functions of lymphatic endothelial cells depend on their microenvironment, which cannot be fully reproduced in vitro. Because of technical limitations, gene expression in uncultured, “ex vivo” lymphatic endothelial cells has not been characterized at the molecular level. We combined tissue micropreparation and direct cell isolation with DNA chip experiments to identify 159 genes differentiating human lymphatic endothelial cells from blood vascular endothelial cells ex vivo. The same analysis performed with cultured primary cells revealed that only 19 genes characteristic for lymphatic endothelium ex vivo retained this property upon culture, while 27 marker genes were newly induced. In addition, a set of panendothelial genes could be recognized. The propagation of lymphatic endothelial cells in culture stimulated transcription of genes associated with cell turnover, basic metabolism, and the cytoskeleton. On the other hand, there was downregulation of genes encoding extracellular matrix components, signaling via transmembrane tyrosine kinase pathways and the chemokine (C-C) ligand 21. Direct ex vivo analysis of the lymphatic endothelial cell transcriptome is helpful for the understanding of the physiology of the lymphatic vascular system and of the pathogenesis of its diseases.


2016 ◽  
Vol 311 (2) ◽  
pp. G276-G285 ◽  
Author(s):  
Hirokazu Sato ◽  
Masaaki Higashiyama ◽  
Hideaki Hozumi ◽  
Shingo Sato ◽  
Hirotaka Furuhashi ◽  
...  

Lymphatic failure is a histopathological feature of inflammatory bowel disease (IBD). Recent studies show that interaction between platelets and podoplanin on lymphatic endothelial cells (LECs) suppresses lymphangiogenesis. We aimed to investigate the role of platelets in the inflammatory process of colitis, which is likely to be through modulation of lymphangiogenesis. Lymphangiogenesis in colonic mucosal specimens from patients with IBD was investigated by studying mRNA expression of lymphangiogenic factors and histologically by examining lymphatic vessel (LV) densities. Involvement of lymphangiogenesis in intestinal inflammation was studied by administering VEGF-receptor 3 (VEGF-R3) inhibitors to the mouse model of colitis using dextran sulfate sodium and evaluating platelet migration to LVs. The inhibitory effect of platelets on lymphangiogenesis was investigated in vivo by administering antiplatelet antibody to the colitis mouse model and in vitro by coculturing platelets with lymphatic endothelial cells. Although mRNA expressions of lymphangiogenic factors such as VEGF-R3 and podoplanin were significantly increased in the inflamed mucosa of patients with IBD compared with those with quiescent mucosa, there was no difference in LV density between them. In the colitis model, VEGF-R3 inhibition resulted in aggravated colitis, decreased lymphatic density, and increased platelet migration to LVs. Administration of an antiplatelet antibody increased LV densities and significantly ameliorated colitis. Coculture with platelets inhibited proliferation of LECs in vitro. Our data suggest that despite elevated lymphangiogenic factors during colonic inflammation, platelet migration to LVs resulted in suppressed lymphangiogenesis, leading to aggravation of colitis by blocking the clearance of inflammatory cells. Modulating the interaction between platelets and LVs could be a new therapeutic means for treating IBD.


Blood ◽  
2010 ◽  
Vol 115 (26) ◽  
pp. 5418-5426 ◽  
Author(s):  
Frederic Larrieu-Lahargue ◽  
Alana L. Welm ◽  
Kirk R. Thomas ◽  
Dean Y. Li

Abstract Netrin-4, a laminin-related secreted protein is an axon guidance cue recently shown essential outside of the nervous system, regulating mammary and lung morphogenesis as well as blood vascular development. Here, we show that Netrin-4, at physiologic doses, induces proliferation, migration, adhesion, tube formation and survival of human lymphatic endothelial cells in vitro comparable to well-characterized lymphangiogenic factors fibroblast growth factor-2 (FGF-2), hepatocyte growth factor (HGF), vascular endothelial growth factor-A (VEGF-A), and vascular endothelial growth factor-C (VEGF-C). Netrin-4 stimulates phosphorylation of intracellular signaling components Akt, Erk and S6, and their specific inhibition antagonizes Netrin-4–induced proliferation. Although Netrin receptors Unc5B and neogenin, are expressed by human lymphatic endothelial cells, suppression of either or both does not suppress Netrin-4–promoted in vitro effects. In vivo, Netrin-4 induces growth of lymphatic and blood vessels in the skin of transgenic mice and in breast tumors. Its overexpression in human and mouse mammary carcinoma cancer cells leads to enhanced metastasis. Finally, Netrin-4 stimulates in vitro and in vivo lymphatic permeability by activating small GTPases and Src family kinases/FAK, and down-regulating tight junction proteins. Together, these data provide evidence that Netrin-4 is a lymphangiogenic factor contributing to tumor dissemination and represents a potential target to inhibit metastasis formation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jason T. Boehme ◽  
Catherine J. Morris ◽  
Samuel R. Chiacchia ◽  
Wenhui Gong ◽  
Katherine Y. Wu ◽  
...  

AbstractNormal growth and development of lymphatic structures depends on mechanical forces created by accumulating interstitial fluid. However, prolonged exposure to pathologic mechanical stimuli generated by chronically elevated lymph flow results in lymphatic dysfunction. The mechanisms that transduce these mechanical forces are not fully understood. Our objective was to investigate molecular mechanisms that alter the growth and metabolism of isolated lymphatic endothelial cells (LECs) exposed to prolonged pathologically elevated lymph flow in vivo within the anatomic and physiologic context of a large animal model of congenital heart disease with increased pulmonary blood flow using in vitro approaches. To this end, late gestation fetal lambs underwent in utero placement of an aortopulmonary graft (shunt). Four weeks after birth, LECs were isolated and cultured from control and shunt lambs. Redox status and proliferation were quantified, and transcriptional profiling and metabolomic analyses were performed. Shunt LECs exhibited hyperproliferative growth driven by increased levels of Hypoxia Inducible Factor 1α (HIF-1α), along with upregulated expression of known HIF-1α target genes in response to mechanical stimuli and shear stress. Compared to control LECs, shunt LECs exhibited abnormal metabolism including abnormalities of glycolysis, the TCA cycle and aerobic respiration. In conclusion, LECs from lambs exposed in vivo to chronically increased pulmonary lymph flow are hyperproliferative, have enhanced expression of HIF-1α and its target genes, and demonstrate altered central carbon metabolism in vitro. Importantly, these findings suggest provocative therapeutic targets for patients with lymphatic abnormalities.


1997 ◽  
Vol 77 (05) ◽  
pp. 0975-0980 ◽  
Author(s):  
Angel Gálvez ◽  
Goretti Gómez-Ortiz ◽  
Maribel Díaz-Ricart ◽  
Ginés Escolar ◽  
Rogelio González-Sarmiento ◽  
...  

SummaryThe effect of desmopressin (DDAVP) on thrombogenicity, expression of tissue factor and procoagulant activity (PCA) of extracellular matrix (ECM) generated by human umbilical vein endothelial cells cultures (HUVEC), was studied under different experimental conditions. HUVEC were incubated with DDAVP (1, 5 and 30 ng/ml) and then detached from their ECM. The reactivity towards platelets of this ECM was tested in a perfusion system. Coverslips covered with DD A VP-treated ECMs were inserted in a parallel-plate chamber and exposed to normal blood anticoagulated with low molecular weight heparin (Fragmin®, 20 U/ml). Perfusions were run for 5 min at a shear rate of 800 s1. Deposition of platelets on ECMs was significantly increased with respect to control ECMs when DDAVP was used at 5 and 30 ng/ml (p <0.05 and p <0.01 respectively). The increase in platelet deposition was prevented by incubation of ECMs with an antibody against human tissue factor prior to perfusion. Immunofluorescence studies positively detected tissue factor antigen on DDAVP derived ECMs. A chromogenic assay performed under standardized conditions revealed a statistically significant increase in the procoagulant activity of the ECMs produced by ECs incubated with 30 ng/ml DDAVP (p <0.01 vs. control samples). Northern blot analysis revealed increased levels of tissue factor mRNA in extracts from ECs exposed to DDAVP. Our data indicate that DDAVP in vitro enhances platelet adhesion to the ECMs through increased expression of tissue factor. A similar increase in the expression of tissue factor might contribute to the in vivo hemostatic effect of DDAVP.


Sign in / Sign up

Export Citation Format

Share Document