scholarly journals New Cytotoxic Cerebrosides from the Red Sea Cucumber Holothuria spinifera Supported by In-Silico Studies

Marine Drugs ◽  
2020 ◽  
Vol 18 (8) ◽  
pp. 405
Author(s):  
Reda F. A. Abdelhameed ◽  
Enas E. Eltamany ◽  
Dina M. Hal ◽  
Amany K. Ibrahim ◽  
Asmaa M. AboulMagd ◽  
...  

Bioactivity-guided fractionation of a methanolic extract of the Red Sea cucumber Holothuria spinifera and LC-HRESIMS-assisted dereplication resulted in the isolation of four compounds, three new cerebrosides, spiniferosides A (1), B (2), and C (3), and cholesterol sulfate (4). The chemical structures of the isolated compounds were established on the basis of their 1D NMR and HRMS spectral data. Metabolic profiling of the H. spinifera extract indicated the presence of diverse secondary metabolites, mostly hydroxy fatty acids, diterpenes, triterpenes, and cerebrosides. The isolated compounds were tested for their in vitro cytotoxicities against the breast adenocarcinoma MCF-7 cell line. Compounds 1, 2, 3, and 4 displayed promising cytotoxic activities against MCF-7 cells, with IC50 values of 13.83, 8.13, 8.27, and 35.56 µM, respectively, compared to that of the standard drug doxorubicin (IC50 8.64 µM). Additionally, docking studies were performed for compounds 1, 2, 3, and 4 to elucidate their binding interactions with the active site of the SET protein, an inhibitor of protein phosphatase 2A (PP2A), which could explain their cytotoxic activity. This study highlights the important role of these metabolites in the defense mechanism of the sea cucumber against fouling organisms and the potential uses of these active molecules in the design of new anticancer agents.

Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1555
Author(s):  
Enas E. Eltamany ◽  
Usama Ramadan Abdelmohsen ◽  
Dina M. Hal ◽  
Amany K. Ibrahim ◽  
Hashim A. Hassanean ◽  
...  

Chemical investigation of the methanolic extract of the Red Sea cucumber Holothuria spinifera led to the isolation of a new cerebroside, holospiniferoside (1), together with thymidine (2), methyl-α-d-glucopyranoside (3), a new triacylglycerol (4), and cholesterol (5). Their chemical structures were established by NMR and mass spectrometric analysis, including gas chromatography–mass spectrometry (GC–MS) and high-resolution mass spectrometry (HRMS). All the isolated compounds are reported in this species for the first time. Moreover, compound 1 exhibited promising in vitro antiproliferative effect on the human breast cancer cell line (MCF-7) with IC50 of 20.6 µM compared to the IC50 of 15.3 µM for the drug cisplatin. To predict the possible mechanism underlying the cytotoxicity of compound 1, a docking study was performed to elucidate its binding interactions with the active site of the protein Mdm2–p53. Compound 1 displayed an apoptotic activity via strong interaction with the active site of the target protein. This study highlights the importance of marine natural products in the design of new anticancer agents.


Molecules ◽  
2020 ◽  
Vol 25 (9) ◽  
pp. 2051
Author(s):  
Islam H. El Azab ◽  
Nadia A.A. Elkanzi

In search of unprecedented tri and/or tetrapod pharmacophoric conjugates, a series of 32 new 4-ethyl-1H-benzo[b][1,4]diazepin-2(3H)-ones were synthesized and properly elucidated using MS, IR, NMR, and elemental analysis. In vitro investigation of 11 compounds of this series, using a panel of two human tumor cell lines namely; human breast adenocarcinoma (MCF-7), and human colorectal carcinoma (HCT-116), revealed promising cytotoxic activities. Among all synthesized compounds, analogue 9 displayed maximum cytotoxicity with IC50 values of 16.19 ± 1.35 and 17.16 ± 1.54 μM against HCT-116 and MCF-7, respectively, compared to standard drug doxorubicin.


2009 ◽  
Vol 6 (1) ◽  
pp. 37-42 ◽  
Author(s):  
W.J. Yoon ◽  
M.J. Kim ◽  
H.B. Koh ◽  
W.J. Lee ◽  
N.H. Lee ◽  
...  

Molecules ◽  
2020 ◽  
Vol 25 (3) ◽  
pp. 544 ◽  
Author(s):  
Eman Assirey ◽  
Azhaar Alsaggaf ◽  
Arshi Naqvi ◽  
Ziad Moussa ◽  
Rawda M. Okasha ◽  
...  

Novel flavanones that incorporate chromene motifs are synthesized via a one-step multicomponent reaction. The structures of the new chromenes are elucidated by using IR, 1H-NMR, 13C-NMR, 1H-1H COSY, HSQC, HMBC, and elemental analysis. The new compounds are screened for their in vitro antimicrobial and cytotoxic activities. The antimicrobial properties are investigated and established against seven human pathogens, employing the agar well diffusion method and the minimum inhibitory concentrations. A majority of the assessed derivatives are found to exhibit significant antimicrobial activities against most bacterial strains, in comparison to standard reference drugs. Moreover, their cytotoxicity is appraised against four different human carcinoma cell lines: human colon carcinoma (HCT-116), human hepatocellular carcinoma (HepG-2), human breast adenocarcinoma (MCF-7), and adenocarcinoma human alveolar basal epithelial cell (A-549). All the desired compounds are subjected to in-silico studies, forecasting their drug likeness, bioactivity, and the absorption, distribution, metabolism, and excretion (ADME) properties prior to their synthetic assembly. The in-silico molecular docking evaluation of all the targeted derivatives is undertaken on gyrase B and the cyclin-dependent kinase. The in-silico predicted outcomes were endorsed by the in vitro studies.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4839 ◽  
Author(s):  
Wafa M. Al-Madhagi ◽  
Najihah Mohd Hashim ◽  
Nasser A. Awad Ali ◽  
Abeer A. Alhadi ◽  
Siti Nadiah Abdul Halim ◽  
...  

Background Peperomia belongs to the family of Piperaceae. It has different uses in folk medicine and contains rare compounds that have led to increased interest in this genus. Peperomia blanda (Jacq.) Kunth is used as an injury disinfectant by Yemeni people. In addition, the majority of Yemen’s population still depend on the traditional remedy for serious diseases such as cancer, inflammation and infection. Currently, there is a deficiency of scientific evidence with regards to the medicinal plants from Yemen. Therefore, this study was performed to assess the chemical profile and in vitro antioxidant and cytotoxic activities of P. blanda. Methods Chemical profiling of P. blanda was carried out using gas chromatography mass spectrometry (GCMS) followed by isolation of bioactive compounds by column chromatography. DPPH• and FRAP assays were used to evaluate antioxidant activity and the MTT assay was performed to estimate the cytotoxicity activity against three cancer cell lines, namely MCF-7, HL-60 and WEHI-3, and three normal cell lines, MCF10A, WRL-68 and HDFa. Results X-ray crystallographic data for peperomin A is reported for the first time here and N,N′-diphenethyloxamide was isolated for the first time from Peperomia blanda. Methanol and dichloromethane extracts showed high radical scavenging activity with an IC50 of 36.81 ± 0.09 µg/mL, followed by the dichloromethane extract at 61.78 ± 0.02 µg/mL, whereas the weak ferric reducing activity of P. blanda extracts ranging from 162.2 ± 0.80 to 381.5 ± 1.31 µg/mL were recorded. In addition, petroleum ether crude extract exhibited the highest cytotoxic activity against all the tested cancer cell lines with IC50 values of 9.54 ± 0.30, 4.30 ± 0.90 and 5.39 ± 0.34 µg/mL, respectively. Peperomin A and the isolated mixture of phytosterol (stigmasterol and β-sitosterol) exhibited cytotoxic activity against MCF-7 and WE-HI cell lines with an IC50 of (5.58 ± 0.47, 4.62 ± 0.03 µg/mL) and (8.94 ± 0.05, 9.84 ± 0.61 µg/mL), respectively, compared to a standard drug, taxol, that has IC50 values of 3.56 ± 0.34 and 1.90 ± 0.9 µg/mL, respectively. Conclusion The activities of P. blanda extracts and isolated compounds recorded in this study underlines the potential that makes this plant a valuable source for further study on anticancer and antioxidant activities.


2014 ◽  
Vol 9 (3) ◽  
pp. 1934578X1400900 ◽  
Author(s):  
Alexandra S. Silchenko ◽  
Anatoly I. Kalinovsky ◽  
Sergey A. Avilov ◽  
Pelageya V. Andryjaschenko ◽  
Pavel S. Dmitrenok ◽  
...  

Four new triterpene glycosides, violaceusosides C (1), D (2), E (3) and G (4) have been isolated from the sea cucumber Pseudocolochirus violaceus (Cucumariidae, Dendrochirotida). Eight known glycosides, DS-holothurin A and holothurinoside A, isolated earlier from Holothuria forskalii (order Aspidochirotida); and violaceuside A, lefevreoside C, philinopside E, intercedenside B, violaceuside II and liovilloside A isolated earlier from representatives of the family Cucumariidae, order Dendrochirotida have also been found in P. violaceus. The chemical structures of the glycosides were elucidated by 2D NMR spectroscopy and mass spectrometry. Violaceusosides C (1), D (2), E (3) and G (4) have holostane-type aglycones and tetrasaccharide linear carbohydrate chains differing in the sugar composition and the number and position of sulfate groups. Violaceusosides E (3) and G (4) are characterized by the presence of a sulfate group at C-3 of the quinovose residue that is very rare among sea cucumber glycosides. Cytotoxic activities of the glycosides 1–4 against cells of the ascite form of mouse Ehrlich carcinoma and hemolytic activities against mouse erythrocytes have been studied. Violaceusosides C (1) and D (2) demonstrated moderate cytotoxic and hemolytic effects, while violaceusosides E (3) and G (4) have more powerful activities.


Molecules ◽  
2019 ◽  
Vol 24 (20) ◽  
pp. 3738 ◽  
Author(s):  
Alminderej ◽  
Elganzory ◽  
El-Bayaa ◽  
Awad ◽  
El-Sayed

New 1,3,4-thiadiazole thioglycosides linked to substituted arylidine systems were synthesized via glycosylation of the prepared 1,3,4-thiadiazole thiol compounds. Click strategy was also used for the synthesis of new 1,3,4-thiadiazole and 1,2,3-triazole hybrid glycosides by reaction of the acetylenic derivatives with different glycosyl azids followed by deacetylation process. The cytotoxic activities of the prepared compounds were studied against HCT-116 (human colorectal carcinoma) and MCF-7 (human breast adenocarcinoma) cell lines using the MTT assay. The results showed that the key thiadiazolethione compounds 2 and 3, the triazole glycosides linked to p-methoxyarylidine derivatives 14 and 15 in addition to the free hydroxyl glycoside 20 were found potent in activity comparable to the reference drug doxorubicin against MCF-7 human cancer cells. The acetylenic derivative 2 and glycoside 20 were also found highly active against HCT-116 cell lines.


Sign in / Sign up

Export Citation Format

Share Document