scholarly journals Natural Products in Polyclad Flatworms

Marine Drugs ◽  
2021 ◽  
Vol 19 (2) ◽  
pp. 47
Author(s):  
Justin M. McNab ◽  
Jorge Rodríguez ◽  
Peter Karuso ◽  
Jane E. Williamson

Marine invertebrates are promising sources of novel bioactive secondary metabolites, and organisms like sponges, ascidians and nudibranchs are characterised by possessing potent defensive chemicals. Animals that possess chemical defences often advertise this fact with aposematic colouration that potential predators learn to avoid. One seemingly defenceless group that can present bright colouration patterns are flatworms of the order Polycladida. Although members of this group have typically been overlooked due to their solitary and benthic nature, recent studies have isolated the neurotoxin tetrodotoxin from these mesopredators. This review considers the potential of polyclads as potential sources of natural products and reviews what is known of the activity of the molecules found in these animals. Considering the ecology and diversity of polyclads, only a small number of species from both suborders of Polycladida, Acotylea and Cotylea have been investigated for natural products. As such, confirming assumptions as to which species are in any sense toxic or if the compounds they use are biosynthesised, accumulated from food or the product of symbiotic bacteria is difficult. However, further research into the group is suggested as these animals often display aposematic colouration and are known to prey on invertebrates rich in bioactive secondary metabolites.

2009 ◽  
Vol 4 (11) ◽  
pp. 1934578X0900401 ◽  
Author(s):  
Yi-Ming Chiang ◽  
Kuan-Han Lee ◽  
James F. Sanchez ◽  
Nancy P. Keller ◽  
Clay C. C. Wang

Recent published sequencing of fungal genomes has revealed that these microorganisms have a surprisingly large number of secondary metabolite pathways that can serve as potential sources for new and useful natural products. Most of the secondary metabolites and their biosynthesis pathways are currently unknown, possibly because they are produced in very small amounts and are thus difficult to detect or are produced only under specific conditions. Elucidating these fungal metabolites will require new molecular genetic tools, better understanding of the regulation of secondary metabolism, and state of the art analytical methods. This review describes recent strategies to mine the cryptic natural products and their biosynthetic pathways in fungi.


Molecules ◽  
2020 ◽  
Vol 25 (4) ◽  
pp. 853 ◽  
Author(s):  
Mei-Mei Cheng ◽  
Xu-Li Tang ◽  
Yan-Ting Sun ◽  
Dong-Yang Song ◽  
Yu-Jing Cheng ◽  
...  

Marine sponges are well known as rich sources of biologically natural products. Growing evidence indicates that sponges harbor a wealth of microorganisms in their bodies, which are likely to be the true producers of bioactive secondary metabolites. In order to promote the study of natural product chemistry and explore the relationship between microorganisms and their sponge hosts, in this review, we give a comprehensive overview of the structures, sources, and activities of the 774 new marine natural products from sponge-derived microorganisms described over the last two decades from 1998 to 2017.


2019 ◽  
Vol 44 (4) ◽  
pp. 554-559
Author(s):  
Bülent Gözcelioğlu

Abstract Background Marine-derived fungi are appraised as a favorable source for discovering new bioactive secondary metabolites. In the last few decades researchers have concentrated on marine-derived fungi to obtain new and pharmaceutically active bioactive secondary metabolites with therapeutic potential. Objective In this study three marine-derived fungi were isolated and identified from marine invertebrates and investigated with regard to their antioxidant and cytotoxic activities. Materials and methods DPPH, SO, NO, and ABTS assays were used for monitoring free radical scavenging activity, and the MTT assay was used for testing cytotoxic activity against HCT-116 colon cancer cells. Results According to the obtained results Malassezia restricta extract was shown to have the highest antioxidant and cytotoxic activities compared to the other tested fungi strains. Conclusion This study is the first report about the antioxidant and cytotoxicity activity of Acremonium sclerotigenum, Aspergillus flavus, and M. restricta. This serves as a valuable preliminary study for activity-guided isolation of secondary metabolites.


2019 ◽  
Author(s):  
Marvin A. Altamia ◽  
Zhenjian Lin ◽  
Amaro E. Trindade-Silva ◽  
Iris Diana Uy ◽  
J. Reuben Shipway ◽  
...  

AbstractShipworms play critical roles in recycling wood in the sea. Symbiotic bacteria supply enzymes that the organisms need for nutrition and wood degradation. Some of these bacteria have been grown in pure culture and have the capacity to make many secondary metabolites. However, little is known about whether such secondary metabolite pathways are represented in the symbiont communities within their hosts. In addition, little has been reported about the patterns of host-symbiont co-occurrence. Here, we collected shipworms from the United States, the Philippines, and Brazil, and cultivated symbiotic bacteria from their gills. We analyzed sequences from 22 shipworm gill metagenomes from seven shipworm species and from 23 cultivated symbiont isolates. Using (meta)genome sequencing, we demonstrate that the cultivated isolates represent all the major bacterial symbiont species and strains in shipworm gills. We show that the bacterial symbionts are distributed among shipworm hosts in consistent, predictable patterns. The symbiotic bacteria encode many biosynthetic gene cluster families (GCFs) for bioactive secondary metabolites, only <5% of which match previously described biosynthetic pathways. Because we were able to cultivate the symbionts, and sequence their genomes, we can definitively enumerate the biosynthetic pathways in these symbiont communities, showing that ∼150 out of ∼200 total biosynthetic gene clusters (BGCs) present in the animal gill metagenomes are represented in our culture collection. Shipworm symbionts occur in suites that differ predictably across a wide taxonomic and geographic range of host species, and collectively constitute an immense resource for the discovery of new biosynthetic pathways to bioactive secondary metabolites.ImportanceWe define a system in which the major symbionts that are important to host biology and to the production of secondary metabolites can be cultivated. We show that symbiotic bacteria that are critical to host nutrition and lifestyle also have an immense capacity to produce a multitude of diverse and likely novel bioactive secondary metabolites that could lead to the discovery of drugs, and that these pathways are found within shipworm gills. We propose that, by shaping associated microbial communities within the host, the compounds support the ability of shipworms to degrade wood in marine environments. Because these symbionts can be cultivated and genetically manipulated, they provide a powerful model for understanding how secondary metabolism impacts microbial symbiosis.


mSystems ◽  
2020 ◽  
Vol 5 (3) ◽  
Author(s):  
Marvin A. Altamia ◽  
Zhenjian Lin ◽  
Amaro E. Trindade-Silva ◽  
Iris Diana Uy ◽  
J. Reuben Shipway ◽  
...  

ABSTRACT Shipworms play critical roles in recycling wood in the sea. Symbiotic bacteria supply enzymes that the organisms need for nutrition and wood degradation. Some of these bacteria have been grown in pure culture and have the capacity to make many secondary metabolites. However, little is known about whether such secondary metabolite pathways are represented in the symbiont communities within their hosts. In addition, little has been reported about the patterns of host-symbiont co-occurrence. Here, we collected shipworms from the United States, the Philippines, and Brazil and cultivated symbiotic bacteria from their gills. We analyzed sequences from 22 shipworm gill metagenomes from seven shipworm species and from 23 cultivated symbiont isolates. Using (meta)genome sequencing, we demonstrate that the cultivated isolates represent all the major bacterial symbiont species and strains in shipworm gills. We show that the bacterial symbionts are distributed among shipworm hosts in consistent, predictable patterns. The symbiotic bacteria harbor many gene cluster families (GCFs) for biosynthesis of bioactive secondary metabolites, only <5% of which match previously described biosynthetic pathways. Because we were able to cultivate the symbionts and to sequence their genomes, we can definitively enumerate the biosynthetic pathways in these symbiont communities, showing that ∼150 of ∼200 total biosynthetic gene clusters (BGCs) present in the animal gill metagenomes are represented in our culture collection. Shipworm symbionts occur in suites that differ predictably across a wide taxonomic and geographic range of host species and collectively constitute an immense resource for the discovery of new biosynthetic pathways corresponding to bioactive secondary metabolites. IMPORTANCE We define a system in which the major symbionts that are important to host biology and to the production of secondary metabolites can be cultivated. We show that symbiotic bacteria that are critical to host nutrition and lifestyle also have an immense capacity to produce a multitude of diverse and likely novel bioactive secondary metabolites that could lead to the discovery of drugs and that these pathways are found within shipworm gills. We propose that, by shaping associated microbial communities within the host, the compounds support the ability of shipworms to degrade wood in marine environments. Because these symbionts can be cultivated and genetically manipulated, they provide a powerful model for understanding how secondary metabolism impacts microbial symbiosis.


2019 ◽  
Vol 294 (46) ◽  
pp. 17684-17692 ◽  
Author(s):  
Joshua P. Torres ◽  
Eric W. Schmidt

Secondary metabolites are often considered within the remit of bacterial or plant research, but animals also contain a plethora of these molecules with important functional roles. Classical feeding studies demonstrate that, whereas some are derived from diet, many of these compounds are made within the animals. In the past 15 years, the genetic and biochemical origin of several animal natural products has been traced to partnerships with symbiotic bacteria. More recently, a number of animal genome-encoded pathways to microbe-like natural products have come to light. These pathways are sometimes horizontally acquired from bacteria, but more commonly they unveil a new and diverse animal biochemistry. In this review, we highlight recent examples of characterized animal biosynthetic enzymes that reveal an unanticipated breadth and intricacy in animal secondary metabolism. The results so far suggest that there may be an immense diversity of animal small molecules and biosynthetic enzymes awaiting discovery. This biosynthetic dark matter is just beginning to be understood, providing a relatively untapped frontier for discovery.


2019 ◽  
Vol 1 (1) ◽  
pp. 60-94 ◽  
Author(s):  
Lu Liu ◽  
Yao-Yao Zheng ◽  
Chang-Lun Shao ◽  
Chang-Yun Wang

Abstract Metabolites from marine organisms have proven to be a rich source for the discovery of multiple potent bioactive molecules with diverse structures. In recent years, we initiated a program to investigate the diversity of the secondary metabolites from marine invertebrates and their symbiotic microorganisms collected from the South China Sea. In this review, representative cases are summarized focusing on molecular diversity, mining, and application of natural products from these marine organisms. To provide a comprehensive introduction to the field of marine natural products, we highlight typical molecules including their structures, chemical synthesis, bioactivities and mechanisms, structure–activity relationships as well as biogenesis. The mining of marine-derived microorganisms to produce novel secondary metabolites is also discussed through the OSMAC strategy and via partial chemical epigenetic modification. A broad prospectus has revealed a plethora of bioactive natural products with novel structures from marine organisms, especially from soft corals, gorgonians, sponges, and their symbiotic fungi and bacteria.


2017 ◽  
Vol 4 (S) ◽  
pp. 50
Author(s):  
Mylene Uy

Although the diversity of life in the terrestrial environment is exceptional, the greatest biodiversity is in the marine environment. Among the marine organisms, the sponges (Porifera) are the most prolific sources of bioactive secondary metabolites. The Philippines, with its long coastal lines, has drawn on its marine capital only to a small extent. Only a few marine organisms (ascidians, sponges, other marine invertebrates and their associated microorganisms) collected from various parts of the Philippines have been documented and investigated in terms of their potential as source of bioactive secondary metabolites, particularly anticancer compounds.  Thirty-seven sponges from the coasts off Mindanao, Philippines were collected, identifies and extracted to give a total of seventy-four polar and nonpolar extracts. The corresponding sponge extracts were screened for the sponge extracts were investigated for cytotoxicity towards colon cell lines (HCT116) using the the tetrazolium dye  (3-(4,5-Dimethylthiazol-2-yl)- 2,5- diphenyltetrazolium bromide) [MTTmethod. The results indicated fifteen (15) sponge extracts to be active at 100- microgram/mL  concentration among which seven (7) were still active at 10 microgram/mL while two (2) still exhibited activity at 1 microgram/mL. Further investigation of the active sponge extracts is currently in progress


RSC Advances ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 5878-5890 ◽  
Author(s):  
Sirpu Natesh Nagabhishek ◽  
Arumugam Madankumar

The marine environment has a remarkable source of natural products mainly from marine fungi, which have been a central source of novel pharmacologically bioactive secondary metabolites.


2020 ◽  
Author(s):  
Roberto G. S. Berlinck ◽  
Darlon I. Bernardi ◽  
Taicia Fill ◽  
Alessandra A. G. Fernandes ◽  
Igor D. Jurberg

Guanidine metabolites isolated from microorganisms, marine invertebrates, terrestrial animals and plants are reviewed, as well as the biosynthesis, total synthesis, biological activities and ecological roles of guanidine natural products.


Sign in / Sign up

Export Citation Format

Share Document