scholarly journals Large-Scale Plasma Peptidomic Profiling Reveals a Novel, Nontoxic, Crassostrea hongkongensis-Derived Antimicrobial Peptide against Foodborne Pathogens

Marine Drugs ◽  
2021 ◽  
Vol 19 (8) ◽  
pp. 420
Author(s):  
Fan Mao ◽  
Yongbo Bao ◽  
Nai-Kei Wong ◽  
Minwei Huang ◽  
Kunna Liu ◽  
...  

Antimicrobial peptides are a fundamental component of mollusks’ defense systems, though they remain a thinly investigated subject. Here, infection by Vibrio parahemolyticus triggered a significant increase in antimicrobial activity in oyster plasma. By using PBS-challenged oysters as a control, plasma peptides from immunologically challenged oysters were subjected to peptidomic profiling and in silico data mining to identify bioactive peptides. Thirty-five identified plasma peptides were up-regulated post infection, among which, six up-regulated peptides (URPs) showed a relatively high positive charge. URP20 was validated with significant antibacterial activity. Virtually, URP20 triggered aggregation of bacterial cells, accompanied by their membrane permeabilization. Interestingly, URP20 was found to be active against Gram-positive and Gram-negative foodborne pathogens as well as Candida albicans, with no cytotoxicity to mammalian cells and mice. Our study provides the first large-scale plasma peptidomic dataset that identifies novel bioactive peptides in marine mollusks. Further exploration of peptide diversity in marine invertebrates should prove a fruitful pursuit for designing novel AMPs with broad applications.

2011 ◽  
Vol 175 (2) ◽  
pp. 209-215 ◽  
Author(s):  
Yuguang Zhao ◽  
Benjamin Bishop ◽  
Jordan E. Clay ◽  
Weixian Lu ◽  
Margaret Jones ◽  
...  

2020 ◽  
Author(s):  
Götz Laible ◽  
Sally Cole ◽  
Brigid Brophy ◽  
Paul Maclean ◽  
Li How Chen ◽  
...  

ABSTRACTTherapeutic monoclonal antibodies (mAbs) represent one of the most important classes of pharmaceutical proteins to treat human diseases. Most are produced in cultured mammalian cells which is expensive, limiting their availability. Goats, striking a good balance between a relatively short generation time and copious milk yield, present an alternative platform for the cost-effective, flexible, large-scale production of therapeutic mAbs. Here, we focused on cetuximab, a mAb against epidermal growth factor receptor, that is commercially produced under the brand name Erbitux and approved for anti-cancer treatments. We generated several transgenic goat lines that produce cetuximab in their milk. Two lines were selected for detailed characterization. Both showed stable genotypes and cetuximab production levels of up to 10g/L. The mAb could be readily purified and showed improved characteristics compared to Erbitux. The goat-produced cetuximab (gCetuximab) lacked a highly immunogenic epitope that is part of Erbitux. Moreover, it showed enhanced binding to CD16 and increased antibody-dependent cell-dependent cytotoxicity compared to Erbitux. This indicates that these goats produce an improved cetuximab version with the potential for enhanced effectiveness and better safety profile compared to treatments with Erbitux. In addition, our study validates transgenic goats as an excellent platform for large-scale production of therapeutic mAbs.


2018 ◽  
Vol 28 (1) ◽  
pp. 33
Author(s):  
Tati Ariyanti

Bacteriophages are viruses that have ability to attack bacterial cells in specific receptors, infect, multiply in bacterial cells and eventually lyse bacterial cells. This unique bacteriophage character is highly beneficial because it is harmless to mammalian cells and does not interfere with natural microbes. Bacteriophages are easy to obtain because they are widespread in the environment such as soil, water, animal, and farm waste or food. This paper describes the potential use of bacteriophages to detect pathogen and foodborne pathogen biocontrol. Bacteriophages are very potential to control the growth of pathogenic bacteria both in food industry and environment. Bacteriophages act as antibiotics, detection tool for pathogenic bacteria in the food chain, food biopreservative from pathogen bacteria contamination, and foodborne disease prevention. Although research on bacteriophage in Indonesia has not been widely reported, research on bacteriophage utilization is being carried on.


1988 ◽  
Vol 6 (5) ◽  
pp. 518-523 ◽  
Author(s):  
Malcolm Rhodes ◽  
John Birch

1995 ◽  
Vol 108 (7) ◽  
pp. 2599-2608 ◽  
Author(s):  
F. Girard ◽  
A. Fernandez ◽  
N. Lamb

Cyclins A and B are known to exhibit significant differences in their function, cellular distribution and timing of degradation at mitosis. On the basis of observations in marine invertebrates and Xenopus, it was proposed that cyclin destruction triggers cdc2 kinase inactivation and anaphase onset. However, this model has recently been questioned, both in Xenopus and in budding yeast. In this report, we present evidence for delayed degradation of both cyclins A and B1 in non-transformed mammalian cells. Indeed, by means of indirect immunofluorescence and confocal microscopy, we show that cyclins A and B1 are present up to anaphase in REF52, Hs68, human primary fibroblasts and NRK epithelial cells. In marked contrast, cyclin A is shown to be degraded within metaphase and cyclin B just at the transition to anaphase in HeLa and two transformed cell lines, derivatives of normal NRK and REF52. These results further support the notion that cyclin destruction might be not correlated with anaphase onset in normal cells and highlight a significant difference in the fate of mitotic cyclins between transformed and non-transformed cells.


2019 ◽  
Vol 53 (4) ◽  
pp. 39-54
Author(s):  
Thomas J. Manning ◽  
Weldon Lane ◽  
Richard Darren Williams ◽  
Matt Cowan ◽  
Marcus Diaz ◽  
...  

AbstractMany oyster species are keystone species that help mitigate shoreline erosion, provide habitats for juvenile fishes, and improve water quality. A number of human-driven factors have led to a decline in their populations worldwide. This article focuses on the chemistry of a novel substrate (nutrient-enriched concrete, or NEC) used to induce settlement and colonization of wild diploid oyster spat and is divided into four sections: (1) composition of the bulk material used for oyster restoration, (2) nutrients added to stimulate growth of bacterial and or algal biofilms, (3) nutrients included for the recently settled oyster spat, and (4) the potential use of natural chemical defense systems to control predators and competing marine life. The goal is to develop a material that can be manufactured and used on a large scale.


2019 ◽  
Vol 20 (23) ◽  
pp. 5862 ◽  
Author(s):  
Daniel Brady ◽  
Alessandro Grapputo ◽  
Ottavia Romoli ◽  
Federica Sandrelli

The alarming escalation of infectious diseases resistant to conventional antibiotics requires urgent global actions, including the development of new therapeutics. Antimicrobial peptides (AMPs) represent potential alternatives in the treatment of multi-drug resistant (MDR) infections. Here, we focus on Cecropins (Cecs), a group of naturally occurring AMPs in insects, and on synthetic Cec-analogs. We describe their action mechanisms and antimicrobial activity against MDR bacteria and other pathogens. We report several data suggesting that Cec and Cec-analog peptides are promising antibacterial therapeutic candidates, including their low toxicity against mammalian cells, and anti-inflammatory activity. We highlight limitations linked to the use of peptides as therapeutics and discuss methods overcoming these constraints, particularly regarding the introduction of nanotechnologies. New formulations based on natural Cecs would allow the development of drugs active against Gram-negative bacteria, and those based on Cec-analogs would give rise to therapeutics effective against both Gram-positive and Gram-negative pathogens. Cecs and Cec-analogs might be also employed to coat biomaterials for medical devices as an approach to prevent biomaterial-associated infections. The cost of large-scale production is discussed in comparison with the economic and social burden resulting from the progressive diffusion of MDR infectious diseases.


2020 ◽  
Vol 295 (50) ◽  
pp. 16906-16919
Author(s):  
Jae-Hong Kim ◽  
Yeojin Seo ◽  
Myungjin Jo ◽  
Hyejin Jeon ◽  
Young-Seop Kim ◽  
...  

Kinases are critical components of intracellular signaling pathways and have been extensively investigated with regard to their roles in cancer. p21-activated kinase-1 (PAK1) is a serine/threonine kinase that has been previously implicated in numerous biological processes, such as cell migration, cell cycle progression, cell motility, invasion, and angiogenesis, in glioma and other cancers. However, the signaling network linked to PAK1 is not fully defined. We previously reported a large-scale yeast genetic interaction screen using toxicity as a readout to identify candidate PAK1 genetic interactions. En masse transformation of the PAK1 gene into 4,653 homozygous diploid Saccharomyces cerevisiae yeast deletion mutants identified ∼400 candidates that suppressed yeast toxicity. Here we selected 19 candidate PAK1 genetic interactions that had human orthologs and were expressed in glioma for further examination in mammalian cells, brain slice cultures, and orthotopic glioma models. RNAi and pharmacological inhibition of potential PAK1 interactors confirmed that DPP4, KIF11, mTOR, PKM2, SGPP1, TTK, and YWHAE regulate PAK1-induced cell migration and revealed the importance of genes related to the mitotic spindle, proteolysis, autophagy, and metabolism in PAK1-mediated glioma cell migration, drug resistance, and proliferation. AKT1 was further identified as a downstream mediator of the PAK1-TTK genetic interaction. Taken together, these data provide a global view of PAK1-mediated signal transduction pathways and point to potential new drug targets for glioma therapy.


2006 ◽  
Vol 69 (2) ◽  
pp. 428-431 ◽  
Author(s):  
ZHINONG YAN ◽  
JOSHUA B. GURTLER ◽  
JEFFREY L. KORNACKI

A solid agar overlay method was developed for recovery of heat-injured Listeria monocytogenes. Presolidified nonselective tryptic soy agar with 0.6% yeast extract (TSAYE, 2% agar) was overlaid on top of solidified modified Oxford agar (MOX). Heat injury of L. monocytogenes was conducted at 58°C for 6 min in a jacketed flask filled with tryptic soy broth. Both noninjured and heat-treated L. monocytogenes cells were plated onto TSAYE, MOX, and TSAYE-MOX plates. No significant differences (P > 0.05) in recovery were found among the three media for noninjured bacterial cells. Recovery of heat-injured L. monocytogenes cells on TSAYE-MOX overlay plates was equivalent to that on the nonselective TSAYE medium, whereas recovery on the selective MOX medium was significantly lower (P < 0.05) compared with both TSAYE and the overlay plates. There were no significant differences (P > 0.05) among the overlay plates prepared 0, 2, 4, 6, 8, 16, and 24 h prior to plating heat-injured bacterial cells. The TSAYE-MOX overlay also allowed differentiation of L. monocytogenes from a mixture of four other types of foodborne pathogens. This solid agar overlay method for recovery of heat-injured L. monocytogenes cells is less time-consuming and less complicated than the conventional overlay-underlay technique and the double overlay modification of the thin agar layer method and may allow for greater laboratory plating efficiencies.


Diversity ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 78 ◽  
Author(s):  
Davide Maggioni ◽  
Luca Saponari ◽  
Davide Seveso ◽  
Paolo Galli ◽  
Andrea Schiavo ◽  
...  

Green fluorescence is a common phenomenon in marine invertebrates and is caused by green fluorescent proteins. Many hydrozoan species display fluorescence in their polyps and/or medusa stages, and in a few cases patterns of green fluorescence have been demonstrated to differ between closely related species. Hydrozoans are often characterized by the presence of cryptic species, due to the paucity of available morphological diagnostic characters. Zanclea species are not an exception, showing high genetic divergence compared to a uniform morphology. In this work, the presence of green fluorescence and the morpho-molecular diversity of six coral- and bryozoan-associated Zanclea species from the Maldivian coral reefs were investigated. Specifically, the presence of green fluorescence in polyps and newly released medusae was explored, the general morphology, as well as the cnidome and the interaction with the hosts, were characterized, and the 16S rRNA region was sequenced and analyzed. Overall, Zanclea species showed a similar morphology, with little differences in the general morphological features and in the cnidome. Three of the analyzed species did not show any fluorescence in both life stages. Three other Zanclea species, including two coral-associated cryptic species, were distinguished by species-specific fluorescence patterns in the medusae. Altogether, the results confirmed the morphological similarity despite high genetic divergence in Zanclea species and indicated that fluorescence patterns may be a promising tool in further discriminating closely related and cryptic species. Therefore, the assessment of fluorescence at a large scale in the whole Zancleidae family may be useful to shed light on the diversity of this enigmatic taxon.


Sign in / Sign up

Export Citation Format

Share Document