scholarly journals Electrodialysis Applications in Wastewater Treatment for Environmental Protection and Resources Recovery: A Systematic Review on Progress and Perspectives

Membranes ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 146 ◽  
Author(s):  
Luigi Gurreri ◽  
Alessandro Tamburini ◽  
Andrea Cipollina ◽  
Giorgio Micale

This paper presents a comprehensive review of studies on electrodialysis (ED) applications in wastewater treatment, outlining the current status and the future prospect. ED is a membrane process of separation under the action of an electric field, where ions are selectively transported across ion-exchange membranes. ED of both conventional or unconventional fashion has been tested to treat several waste or spent aqueous solutions, including effluents from various industrial processes, municipal wastewater or salt water treatment plants, and animal farms. Properties such as selectivity, high separation efficiency, and chemical-free treatment make ED methods adequate for desalination and other treatments with significant environmental benefits. ED technologies can be used in operations of concentration, dilution, desalination, regeneration, and valorisation to reclaim wastewater and recover water and/or other products, e.g., heavy metal ions, salts, acids/bases, nutrients, and organics, or electrical energy. Intense research activity has been directed towards developing enhanced or novel systems, showing that zero or minimal liquid discharge approaches can be techno-economically affordable and competitive. Despite few real plants having been installed, recent developments are opening new routes for the large-scale use of ED techniques in a plethora of treatment processes for wastewater.

2021 ◽  
Vol 06 ◽  
Author(s):  
Ayekpam Chandralekha Devi ◽  
G. K. Hamsavi ◽  
Simran Sahota ◽  
Rochak Mittal ◽  
Hrishikesh A. Tavanandi ◽  
...  

Abstract: Algae (both micro and macro) have gained huge attention in the recent past for their high commercial value products. They are the source of various biomolecules of commercial applications ranging from nutraceuticals to fuels. Phycobiliproteins are one such high value low volume compounds which are mainly obtained from micro and macro algae. In order to tap the bioresource, a significant amount of work has been carried out for large scale production of algal biomass. However, work on downstream processing aspects of phycobiliproteins (PBPs) from algae is scarce, especially in case of macroalgae. There are several difficulties in cell wall disruption of both micro and macro algae because of their cell wall structure and compositions. At the same time, there are several challenges in the purification of phycobiliproteins. The current review article focuses on the recent developments in downstream processing of phycobiliproteins (mainly phycocyanins and phycoerythrins) from micro and macroalgae. The current status, the recent advancements and potential technologies (that are under development) are summarised in this review article besides providing future directions for the present research area.


2021 ◽  
Author(s):  
Elisie Kåresdotter ◽  
Zahra Kalantari

<p>Wetlands as large-scale nature-based solutions (NBS) provide multiple ecosystem services of local, regional, and global importance. Knowledge concerning location and vulnerability of wetlands, specifically in the Arctic, is vital to understand and assess the current status and future potential changes in the Arctic. Using available high-resolution wetland databases together with datasets on soil wetness and soil types, we created the first high-resolution map with full coverage of Arctic wetlands. Arctic wetlands' vulnerability is assessed for the years 2050, 2075, and 2100 by utilizing datasets of permafrost extent and projected mean annual average temperature from HadGEM2-ES climate model outputs for three change scenarios (RCP2.6, 4.5, and 8.5). With approximately 25% of Arctic landmass covered with wetlands and 99% being in permafrost areas, Arctic wetlands are highly vulnerable to changes in all scenarios, apart from RCP2.6 where wetlands remain largely stable. Climate change threatens Arctic wetlands and can impact wetland functions and services. These changes can adversely affect the multiple services this sort of NBS can provide in terms of great social, economic, and environmental benefits to human beings. Consequently, negative changes in Arctic wetland ecosystems can escalate land-use conflicts resulting from natural capital exploitation when new areas become more accessible for use. Limiting changes to Arctic wetlands can help maintain their ecosystem services and limit societal challenges arising from thawing permafrost wetlands, especially for indigenous populations dependent on their ecosystem services. This study highlights areas subject to changes and provides useful information to better plan for a sustainable and social-ecological resilient Arctic.</p><p>Keywords: Arctic wetlands, permafrost thaw, regime shift vulnerability, climate projection</p>


2015 ◽  
Vol 72 (9) ◽  
pp. 1635-1643 ◽  
Author(s):  
Christian Baresel ◽  
Lena Dahlgren ◽  
Mats Almemark ◽  
Aleksandra Lazic

Wastewater reclamation is an upcoming approach that will significantly affect wastewater treatment systems. Despite the fact that technology for treating wastewater to an effluent water quality that meets various quality standards for reuse is already available and applied, the reuse of water is not just a simple and straightforward road. Significant additional energy and civil infrastructure is required to treat the water to a standard that allows it to be safely reused. The total impact of treating and reusing water may be higher than the environmental benefits. Thus, it is crucial the life-cycle impacts from upstream and downstream processes of various reuse technologies, i.e. production of chemicals, energy use, eutrophication, sludge handling, etc. The present paper provides a comprehensive evaluation considering different reuse purposes, treatment technologies and plant size. The results of this study suggest that all these factors are highly significant for the environmental impact of wastewater treatment systems for non-potable applications.


Author(s):  
M.S. Gaikwad

The worldwide one major and important issue is the increasing shortage of freshwater. Water is polluted by various category of pollutant such as heavy metal, organic toxic chemical, dyes and others. In such situation providing better solutions for water treatment is a major challenge for researchers. Various techniques have been used in wastewater treatment applications but among those techniques the membrane technology is the most promising technology. This chapter contains recent progress of membrane technology for advanced wastewater treatment, is systematically summarize. This review includes introduction about different membrane technology such as microfiltration (MF), ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO). Current status of each membrane separation techniques, membrane cleaning techniques, challenges and promising solutions for various wastewater treatment have been discussed.


Author(s):  
A. Bernardelli ◽  
S. Marsili-Libelli ◽  
A. Manzini ◽  
S. Stancari ◽  
G. Tardini ◽  
...  

Abstract Two separate goals should be jointly pursued in wastewater treatment: nutrient removal and energy conservation. An efficient controller performance should cope with process uncertainties, seasonal variations and process nonlinearities. This paper describes the design and testing of a model predictive controller (MPC) based on neuro-fuzzy techniques that is capable of estimating the main process variables and providing the right amount of aeration to achieve an efficient and economical operation. This algorithm has been field tested on a large-scale municipal wastewater treatment plant of about 500,000 PE, with encouraging results in terms of better effluent quality and energy savings.


2019 ◽  
Vol 86 ◽  
pp. 00020
Author(s):  
Zbigniew Mucha ◽  
Włodzimierz Wójcik ◽  
Michał Polus

In recent years, anaerobic membrane bioreactor (AnMBR) technology has been considered as a very appealing alternative for wastewater treatment due to its significant advantages over conventional anaerobic treatment and aerobic membrane bioreactor (MBR) technology. The paper provides an overview of the current status of the anaerobic membrane bioreactor technology with a special emphasis on its performance and drawbacks when applied for domestic and municipal wastewater treatment. According to the reported data, the renewable energy produced at the plants (i.e. from methane) covered the energy demand for membrane filtration while the excess energy can be further utilized. Anaerobic membrane bioreactors are an attractive technology that needs further research efforts and applications at an industrial scale.


2012 ◽  
Vol 610-613 ◽  
pp. 1556-1559
Author(s):  
Zhen Min Chen ◽  
Wei Xie ◽  
Hai Ying Zhang

Wastewater is an inevitable by-product in human production and life. And with development of human society and enhancing of urbanization level and citizens living standards, wastewater quantity will sharply increase. Greenhouse gas (GHG) from wastewater treatment will drastically do, too. In especial CO2, its emission quantity is most, its greenhouse effect is highest among GHG from wastewater treatment. But current wastewater treatment engineering does not relate to GHG in the design and operation process. In the case of global climate change, obviously the problem of CO2emission from wastewater treatment has to be solved. And because of this the paper sum up China and other country's research results, current status, and future direction.


2015 ◽  
Vol 17 (2) ◽  
pp. 421-428 ◽  
Author(s):  
Lisa M. Colosi ◽  
Eleazer P. Resurreccion ◽  
Yongli Zhang

This study uses a systems-level modeling approach to illustrate a novel synergy between municipal wastewater treatment and large-scale algaculture for production of bio-energy, whereby algae-mediated tertiary treatment provides efficient removal of unregulated, strongly estrogenic steroid hormones from the secondary effluent.


Sign in / Sign up

Export Citation Format

Share Document