scholarly journals Resistance of Polypropylene Membrane to Oil Fouling during Membrane Distillation

Membranes ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 552
Author(s):  
Marek Gryta

The influence of oil emulsion presence in the water on the course of water desalination by membrane distillation was studied. The feed water was contaminated by oil collected from the bilge water. The impact of feed composition on the wetting resistance of hydrophobic polypropylene membranes was evaluated during long-term studies. Two types of the capillary membranes fabricated by thermally induced phase separation method were tested. It has been found that these membranes were non-wetted during the separation of NaCl solutions over a period of 500 h of modules exploitation. The addition of oil (5–100 mg/L) to the feed caused a progressive decline of the permeate flux up to 30%; however, the applied hydrophobic membranes retained their non-wettability for the consecutive 2400 h of the process operation. It was indicated that several compounds containing the carbonyl group were formed on the membranes surface during the process. These hydrophilic compounds facilitated the water adsorption on the surface of polypropylene which restricted the oil deposition on the membranes used.

Fibers ◽  
2018 ◽  
Vol 7 (1) ◽  
pp. 1 ◽  
Author(s):  
Marek Gryta

Only nonwetted porous membranes can be used in membrane distillation. The possibility of application in this process the capillary polypropylene membranes manufactured by thermally-induced phase separation was studied. The performance of a few types of membranes available commercially was presented. The resistance of the membranes to wetting was tested in the continuous process of water desalination. These studies were carried out for 1000 h without module cleaning. The presence of scaling layer on the membranes surface was confirmed by Scanning Electron Microscope observations. Both the permeate flux and distillate conductivity were almost not varied after the studied period of time, what indicates that the used membranes maintained their nonwettability, and the negative influence of scaling was limited. The role of surface porosity on the pore wetting and influence of membrane wettability on the quality of the distillate obtained were discussed.


Author(s):  
Reza Baghaei Lakeh ◽  
Keaton Cornell ◽  
Benny Ly ◽  
Aaron Chan ◽  
Sepideh Jankhah

As the population grows, one issue that is continually being addressed is the lack of clean water resources. In order to explore viable solutions, rapid experimentation and research has been underway to alleviate the water crisis. With the addition of new emerging technology, the development, improvement, and understanding of various techniques used to treat non-potable water has expanded. One subcategory of water filtration in particular that has seen rapid growth is Membrane Distillation (MD). MD is a filtration process that utilizes thermal energy to desalinate and decontaminate water. Compared to current industry leading techniques such as reverse osmosis, MD does not require such large operating pressures, leading to less power consumption. MD is accomplished primarily by flowing contaminated feed water at elevated temperatures across semi-permeable membranes. The membranes used are made to allow water vapors to penetrate through and separate from the contaminated liquid portion. By maintaining a temperature difference across the membrane, a pressure gradient is created, which drives the vapor of feed water through the pores in the membrane. Once the vapor passes through the membrane, it condenses through various methods and is collected. Air Gap Membrane Distillation (AGMD) has shown significant ability to desalinate water effectively in small scales. The air gap between the membrane and condensation plate minimizes heat loss through conduction, making AGMD a more attractive option for upscaling. In this project a laboratory-scale test cell was developed to test AGMD using different membranes, and operational parameters. In order to test such parameters, a unique design with baffled channels to induce turbulence was designed and manufactured. Feed water and coolant temperature differences, flow rates, membrane porosity, and air gap thickness are among the parameters that has been studied in this research. Temperatures of the hot feed were varied from 40°C to 80°C while the cold feed temperature was kept at a near constant temperature of 0°C. Flow rates of feed water and coolant water range from 1 to 3 L/Min. It was observed that the permeate flux is an increasing function of feed water temperature and membrane porosity. The air gap thickness plays a major role in permeate flux and energy consumption of the system.


Author(s):  
Atia E. Khalifa ◽  
Dahiru U. Lawal ◽  
Mohamed A. Antar

Due to water scarcity in the Arabic gulf region, water desalination technologies are considered extremely important. The present work represents a fundamental study on the effect of basic operating and design variables on the flux of an air gap membrane distillation (AGMD) unit for water desalination. The flat sheet, channeled air gap membrane distillation module was designed and manufactured locally. The effect of feed flow rate, feed temperature, coolant water temperature, the air gap width, and the water salinity on the module flux are investigated. Analytical model for heat and mass transfer is used to predict the flux and the model results are compared to the experimental ones. Results showed that the technique has good potential to be used for water desalination. The permeate flux is increased by increasing feed flow rate, feed temperature, decreasing the air gap width, decreasing coolant temperature, and decreasing salinity of feed water. For a given feed flow rate, the width of the air gap and the feed water temperature are found to be the most effective parameters in increasing the distillate flux. Predicting the permeate flux with analytical models for heat and mass transfer showed good agreement with experimental results.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Adnan Alhathal Alanezi ◽  
H. Abdallah ◽  
E. El-Zanati ◽  
Adnan Ahmad ◽  
Adel O. Sharif

A new O-ring flat sheet membrane module design was used to investigate the performance of Vacuum Membrane Distillation (VMD) for water desalination using two commercial polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF) flat sheet hydrophobic membranes. The design of the membrane module proved its applicability for achieving a high heat transfer coefficient of the order of 103 (W/m2 K) and a high Reynolds number (Re). VMD experiments were conducted to measure the heat and mass transfer coefficients within the membrane module. The effects of the process parameters, such as the feed temperature, feed flow rate, vacuum degree, and feed concentration, on the permeate flux have been investigated. The feed temperature, feed flow rate, and vacuum degree play an important role in enhancing the performance of the VMD process; therefore, optimizing all of these parameters is the best way to achieve a high permeate flux. The PTFE membrane showed better performance than the PVDF membrane in VMD desalination. The obtained water flux is relatively high compared to that reported in the literature, reaching 43.8 and 52.6 (kg/m2 h) for PVDF and PTFE, respectively. The salt rejection of NaCl was higher than 99% for both membranes.


2017 ◽  
Vol 34 (1) ◽  
Author(s):  
Rakesh Baghel ◽  
Sushant Upadhyaya ◽  
Kailash Singh ◽  
Satyendra P. Chaurasia ◽  
Akhilendra B. Gupta ◽  
...  

AbstractThe main aim of this article is to provide a state-of-the-art review of the experimental studies on vacuum membrane distillation (VMD) process. An introduction to the history of VMD is carried out along with the other membrane distillation configurations. Recent developments in process, characterization of membrane, module design, transport phenomena, and effect of operating parameters on permeate flux are discussed for VMD in detail. Several heat and mass transfer correlations obtained by various researchers for different VMD modules have been discussed. The impact of membrane fouling with its control in VMD is discussed in detail. In this paper, temperature polarization coefficient and concentration polarization coefficient are elaborated in detail. Integration of VMD with other membrane separation processes/industrial processes have been explained to improve the performance of the system and make it more energy efficient. A critical evaluation of the VMD literature is incorporated throughout this review.


Water ◽  
2018 ◽  
Vol 10 (7) ◽  
pp. 947 ◽  
Author(s):  
Anthoula Karanasiou ◽  
Margaritis Kostoglou ◽  
Anastasios Karabelas

Vacuum membrane distillation (VMD) is an attractive variant of the novel membrane distillation process, which is promising for various separations, including water desalination and bioethanol recovery through fermentation of agro-industrial by-products. This publication is part of an effort to develop a capillary membrane module for various applications, as well as a model that would facilitate VMD process design. Experiments were conducted in a laboratory pilot VMD unit, comprising polypropylene capillary-membrane modules. Performance data, collected at modest temperatures (37 °C to 65 °C) with deionized and brackish water, confirmed the improved system productivity with increasing feed-water temperature; excellent salt rejection was obtained. The recovery of ethanol from ethanol-water mixtures and from fermented winery by-products was also studied, in continuous, semi-continuous, and batch operating modes. At low-feed-solution temperature (27–47 °C), ethanol-solution was concentrated 4 to 6.5 times in continuous operation and 2 to 3 times in the semi-continuous mode. Taking advantage of the small property variation in the module axial-flow direction, a simple VMD process model was developed, satisfactorily describing the experimental data. This VMD model appears to be promising for practical applications, and warrants further R&D work.


2008 ◽  
Vol 62 (1) ◽  
Author(s):  
Marek Gryta

AbstractMembrane distillation was used to produce demineralized water from ground water. The influence of feed water pretreatment carried out in a contact clarifier (softening with Ca(OH)2 and coagulation with FeSO4 · 7H2O) followed by filtration, on the process effectiveness was evaluated. It was found that the chemical pretreatment decreased the membrane fouling; however, the degree of water purification was insufficient because precipitation of small amounts of deposit on the membrane surface during the process operation was still observed. The permeate flux was gradually decreasing as a result of scaling. The morphology and composition of the fouling layer were studied using scanning electron microscopy coupled with energy dispersion spectrometry. The presence of significant amounts of silica, apart from calcium and magnesium, was determined in the formed deposit. The removal of foulants by heterogeneous crystallization performed inside the filter (70 mesh), assembled directly at the module inlet, was found to be a solution preventing the membrane scaling.


2018 ◽  
Vol 13 (1) ◽  
pp. 200-209 ◽  
Author(s):  
Atia E. Khalifa

Abstract Membrane distillation (MD) is a promising thermally-driven membrane separation technology for water desalination. In MD, water vapor is being separated from the hot feed water solution using a micro-porous hydrophobic membrane, due to the difference in vapor pressures across the membrane. In the present work, experiments are conducted to compare the performance of water gap membrane distillation (WGMD) and air gap membrane distillation (AGMD) modules under the main operating and design conditions including the feed and coolant temperatures, membrane material and pore sizes, and the gap width. Results showed that the WGMD module produced higher fluxes as compared to the AGMD module, for all test conditions. The feed temperature is the dominant factor affecting the system flux. The permeate flux increases with reducing the gap width for both water and air gap modules. However, WGMD module was found to be less sensitive to the change in the gap width compared to the AGMD module. The PTFE membrane produced higher permeate flux as compared to the PVDF membrane. Bigger mean pore diameter enhanced the permeate flux, however, this enhancement is marginal at high feed temperatures. With increasing the feed temperature, the GOR values increase and the specific energy consumption decreases.


2006 ◽  
Vol 60 (6) ◽  
Author(s):  
K. Karakulski ◽  
M. Gryta ◽  
M. Sasim

AbstractApplication of ultrafiltration, nanofiltration, reverse osmosis, membrane distillation, and integrated membrane processes for the preparation of process water from natural water or industrial effluents was investigated. A two-stage reverse osmosis plant enabled almost complete removal of solutes from the feed water. High-purity water was prepared using the membrane distillation. However, during this process a rapid membrane fouling and permeate flux decline was observed when the tap water was used as a feed. The precipitation of deposit in the modules was limited by the separation of sparingly soluble salts from the feed water in the nanofiltration. The combined reverse osmosis—membrane distillation process prevented the formation of salt deposits on the membranes employed for the membrane distillation. Ultrafiltration was found to be very effective removing trace amounts of oil from the feed water. Then the ultrafiltration permeate was used for feeding of the remaining membrane modules resulting in the total removal of oil residue contamination. The ultrafiltration allowed producing process water directly from the industrial effluents containing petroleum derivatives.


Sign in / Sign up

Export Citation Format

Share Document