scholarly journals Density Functional Theory Study of B, N, and Si Doped Penta-Graphene as the Potential Gas Sensors for NH3 Detection

Membranes ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 77
Author(s):  
Guangjun Chen ◽  
Lei Gan ◽  
Huihui Xiong ◽  
Haihui Zhang

Designing a high-performance gas sensor to efficiently detect the hazardous NH3 molecule is beneficial to air monitoring and pollution control. In this work, the first-principles calculations were employed to investigate the adsorption structures, electronic characteristics, and gas sensing properties of the pristine and B-, N-, P-, Al-, and Si-doped penta-graphene (PG) toward the NH3, H2S, and SO2 molecules. The results indicate that the pristine PG is insensitive to those toxic gases due to the weak adsorption strength and long adsorption distance. Nevertheless, the doping of B, N, Al, and Si (B and Al) results in the transition of NH3 (H2S and SO2) adsorption from physisorption to chemisorption, which is primarily ascribed to the large charge transfer and strong orbital hybridizations between gas molecules and doping atoms. In addition, NH3 adsorption leads to the remarkable variation of electrical conductivity for the B-, N-, and Si-doped PG, and the adsorption strength of NH3 on the B-, N-, and Si-doped PG is larger than that of H2S and SO2. Moreover, the chemically adsorbed NH3 molecule on the N-, B-, and Si-doped PG can be effectively desorbed by injecting electrons into the systems. Those results shed light on the potential application of PG-based nanosheets as reusable gas sensors for NH3 detection.

2019 ◽  
Vol 43 (12) ◽  
pp. 4900-4907 ◽  
Author(s):  
Dongzhi Zhang ◽  
Maosong Pang ◽  
Junfeng Wu ◽  
Yuhua Cao

A high-performance sulfur dioxide sensor based on a platinum-loaded titanium dioxide/molybdenum disulfide ternary nanocomposite is synthesized via layer-by-layer self-assembly.


Chemosensors ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 227
Author(s):  
Qichao Li ◽  
Yamin Liu ◽  
Di Chen ◽  
Jianmin Miao ◽  
Xiao Zhi ◽  
...  

High-performance tracking trace amounts of NO2 with gas sensors could be helpful in protecting human health since high levels of NO2 may increase the risk of developing acute exacerbation of chronic obstructive pulmonary disease. Among various gas sensors, Graphene-based sensors have attracted broad attention due to their sensitivity, particularly with the addition of noble metals (e.g., Ag). Nevertheless, the internal mechanism of improving the gas sensing behavior through doping Ag is still unclear. Herein, the impact of Ag doping on the sensing properties of Graphene-based sensors is systematically analyzed via first principles. Based on the density-functional theory (DFT), the adsorption behavior of specific gases (NO2, NH3, H2O, CO2, CH4, and C2H6) on Ag-doped Graphene (Ag–Gr) is calculated and compared. It is found that NO2 shows the strongest interaction and largest Mulliken charge transfer to Ag–Gr among these studied gases, which may directly result in the highest sensitivity toward NO2 for the Ag–Gr-based gas sensor.


2020 ◽  
Author(s):  
jiamu cao ◽  
jing zhou ◽  
jianing shi ◽  
yufeng zhang ◽  
junyu chen ◽  
...  

Abstract Owing to their harmful and polluting the environment, nitrogen oxides and sulfur dioxide are expected to monitor when they are used. However, the widespread use of gas sensing methods presents obstacles in terms of portability or stability. Hence, a better detect way needs to be found urgently. The success of graphene-based gas sensors has stimulated interest in two-dimensional (2D) materials in the gas sensing area. Transition metal dichalcogenides (TMDs), such as MoS2 or WS2, are considered to have the high-performance potential for gas sensors. Unfortunately, when used as a gas sensor, the sensing response of the pristine TMDs is greatly affected by a number of gas molecules that are too weak to be detected. Herein, to evaluate the sensing capability of Al, P, and Fe-doped WS2 to NO, NO2, and SO2, the molecular model of the adsorption systems was constructed, and density functional theory (DFT) was used to calculate the adsorption behavior of these gases. The binding force of all the doped-WS2 to the harmful gas molecules is much stronger than that of the pristine WS2. According to the results of adsorption energy, band structure, and state density, Al-doped WS2 has the potential to be used as NO and SO2 gas sensor, while P-doped WS2 is selective to NO. This work opens up a new reference for choosing appropriate doping types on 2D materials for noxious gas sensing.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 783 ◽  
Author(s):  
Andrea Gaiardo ◽  
David Novel ◽  
Elia Scattolo ◽  
Michele Crivellari ◽  
Antonino Picciotto ◽  
...  

The substrate plays a key role in chemoresistive gas sensors. It acts as mechanical support for the sensing material, hosts the heating element and, also, aids the sensing material in signal transduction. In recent years, a significant improvement in the substrate production process has been achieved, thanks to the advances in micro- and nanofabrication for micro-electro-mechanical system (MEMS) technologies. In addition, the use of innovative materials and smaller low-power consumption silicon microheaters led to the development of high-performance gas sensors. Various heater layouts were investigated to optimize the temperature distribution on the membrane, and a suspended membrane configuration was exploited to avoid heat loss by conduction through the silicon bulk. However, there is a lack of comprehensive studies focused on predictive models for the optimization of the thermal and mechanical properties of a microheater. In this work, three microheater layouts in three membrane sizes were developed using the microfabrication process. The performance of these devices was evaluated to predict their thermal and mechanical behaviors by using both experimental and theoretical approaches. Finally, a statistical method was employed to cross-correlate the thermal predictive model and the mechanical failure analysis, aiming at microheater design optimization for gas-sensing applications.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Yun Li ◽  
Xiaobo Li ◽  
Shidong Zhang ◽  
Liemao Cao ◽  
Fangping Ouyang ◽  
...  

AbstractStrain engineering has become one of the effective methods to tune the electronic structures of materials, which can be introduced into the molecular junction to induce some unique physical effects. The various γ-graphyne nanoribbons (γ-GYNRs) embedded between gold (Au) electrodes with strain controlling have been designed, involving the calculation of the spin-dependent transport properties by employing the density functional theory. Our calculated results exhibit that the presence of strain has a great effect on transport properties of molecular junctions, which can obviously enhance the coupling between the γ-GYNR and Au electrodes. We find that the current flowing through the strained nanojunction is larger than that of the unstrained one. What is more, the length and strained shape of the γ-GYNR serves as the important factors which affect the transport properties of molecular junctions. Simultaneously, the phenomenon of spin-splitting occurs after introducing strain into nanojunction, implying that strain engineering may be a new means to regulate the electron spin. Our work can provide theoretical basis for designing of high performance graphyne-based devices in the future.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 3947
Author(s):  
Wei Wang ◽  
Qinyi Zhang ◽  
Ruonan Lv ◽  
Dong Wu ◽  
Shunping Zhang

High performance formaldehyde gas sensors are widely needed for indoor air quality monitoring. A modified layer of zeolite on the surface of metal oxide semiconductors results in selectivity improvement to formaldehyde as gas sensors. However, there is insufficient knowledge on how the thickness of the zeolite layer affects the gas sensing properties. In this paper, ZSM-5 zeolite films were coated on the surface of the SnO2 gas sensors by the screen printing method. The thickness of ZSM-5 zeolite films was controlled by adjusting the numbers of screen printing layers. The influence of ZSM-5 film thickness on the performance of ZSM-5/SnO2 gas sensors was studied. The results showed that the ZSM-5/SnO2 gas sensors with a thickness of 19.5 μm greatly improved the selectivity to formaldehyde, and reduced the response to ethanol, acetone and benzene at 350 °C. The mechanism of the selectivity improvement to formaldehyde of the sensors was discussed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Li-Yun Tian ◽  
Oliver Gutfleisch ◽  
Olle Eriksson ◽  
Levente Vitos

AbstractTetragonal ($${\hbox{L1}}_{0}$$ L1 0 ) FeNi is a promising material for high-performance rare-earth-free permanent magnets. Pure tetragonal FeNi is very difficult to synthesize due to its low chemical order–disorder transition temperature ($$\approx {593}$$ ≈ 593  K), and thus one must consider alternative non-equilibrium processing routes and alloy design strategies that make the formation of tetragonal FeNi feasible. In this paper, we investigate by density functional theory as implemented in the exact muffin-tin orbitals method whether alloying FeNi with a suitable element can have a positive impact on the phase formation and ordering properties while largely maintaining its attractive intrinsic magnetic properties. We find that small amount of non-magnetic (Al and Ti) or magnetic (Cr and Co) elements increase the order–disorder transition temperature. Adding Mo to the Co-doped system further enhances the ordering temperature while the Curie temperature is decreased only by a few degrees. Our results show that alloying is a viable route to stabilizing the ordered tetragonal phase of FeNi.


2021 ◽  
Author(s):  
Lanjuan Zhou ◽  
Sujing Yu ◽  
Yan Yang ◽  
Qi Li ◽  
Tingting Li ◽  
...  

In this paper, the effects of five noble metals (Au, Pt, Pd, Ag, Ru) doped MoSe2 on improving gas sensing performance were predicted through density functional theory (DFT) based on...


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 372
Author(s):  
Liyang Lin ◽  
Susu Chen ◽  
Tao Deng ◽  
Wen Zeng

The metal oxides/graphene nanocomposites have great application prospects in the fields of electrochemical energy storage and gas sensing detection. However, rational synthesis of such materials with good conductivity and electrochemical activity is the topical challenge for high-performance devices. Here, SnO2/graphene nanocomposite is taken as a typical example and develops a universal synthesis method that overcome these challenges and prepares the oxygen-deficient SnO2 hollow nanospheres/graphene (r-SnO2/GN) nanocomposite with excellent performance for supercapacitors and gas sensors. The electrode r-SnO2/GN exhibits specific capacitance of 947.4 F g−1 at a current density of 2 mA cm−2 and of 640.0 F g−1 even at 20 mA cm−2, showing remarkable rate capability. For gas-sensing application, the sensor r-SnO2/GN showed good sensitivity (~13.8 under 500 ppm) and short response/recovering time toward methane gas. These performance features make r-SnO2/GN nanocomposite a promising candidate for high-performance energy storage devices and gas sensors.


Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 2123 ◽  
Author(s):  
Wenli Li ◽  
Yong Zhang ◽  
Xia Long ◽  
Juexian Cao ◽  
Xin Xin ◽  
...  

The unique properties of MoS2 nanosheets make them a promising candidate for high-performance room temperature gas detection. Herein, few-layer MoS2 nanosheets (FLMN) prepared via mechanical exfoliation are coated on a substrate with interdigital electrodes for room-temperature NO2 detection. Interestingly, compared with other NO2 gas sensors based on MoS2, FLMN gas sensors exhibit high responsivity for room-temperature NO2 detection, and NO2 is easily desorbed from the sensor surface with an ultrafast recovery behavior, with recovery times around 2 s. The high responsivity is related to the fact that the adsorbed NO2 can affect the electron states within the entire material, which is attributed to the very small thickness of the MoS2 nanosheets. First-principles calculations were carried out based on the density functional theory (DFT) to verify that the ultrafast recovery behavior arises from the weak van der Waals binding between NO2 and the MoS2 surface. Our work suggests that FLMN prepared via mechanical exfoliation have a great potential for fabricating high-performance NO2 gas sensors.


Sign in / Sign up

Export Citation Format

Share Document