scholarly journals Nitrogen Dioxide Gas Sensor Based on Ag-Doped Graphene: A First-Principle Study

Chemosensors ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 227
Author(s):  
Qichao Li ◽  
Yamin Liu ◽  
Di Chen ◽  
Jianmin Miao ◽  
Xiao Zhi ◽  
...  

High-performance tracking trace amounts of NO2 with gas sensors could be helpful in protecting human health since high levels of NO2 may increase the risk of developing acute exacerbation of chronic obstructive pulmonary disease. Among various gas sensors, Graphene-based sensors have attracted broad attention due to their sensitivity, particularly with the addition of noble metals (e.g., Ag). Nevertheless, the internal mechanism of improving the gas sensing behavior through doping Ag is still unclear. Herein, the impact of Ag doping on the sensing properties of Graphene-based sensors is systematically analyzed via first principles. Based on the density-functional theory (DFT), the adsorption behavior of specific gases (NO2, NH3, H2O, CO2, CH4, and C2H6) on Ag-doped Graphene (Ag–Gr) is calculated and compared. It is found that NO2 shows the strongest interaction and largest Mulliken charge transfer to Ag–Gr among these studied gases, which may directly result in the highest sensitivity toward NO2 for the Ag–Gr-based gas sensor.

2020 ◽  
Author(s):  
jiamu cao ◽  
jing zhou ◽  
jianing shi ◽  
yufeng zhang ◽  
junyu chen ◽  
...  

Abstract Owing to their harmful and polluting the environment, nitrogen oxides and sulfur dioxide are expected to monitor when they are used. However, the widespread use of gas sensing methods presents obstacles in terms of portability or stability. Hence, a better detect way needs to be found urgently. The success of graphene-based gas sensors has stimulated interest in two-dimensional (2D) materials in the gas sensing area. Transition metal dichalcogenides (TMDs), such as MoS2 or WS2, are considered to have the high-performance potential for gas sensors. Unfortunately, when used as a gas sensor, the sensing response of the pristine TMDs is greatly affected by a number of gas molecules that are too weak to be detected. Herein, to evaluate the sensing capability of Al, P, and Fe-doped WS2 to NO, NO2, and SO2, the molecular model of the adsorption systems was constructed, and density functional theory (DFT) was used to calculate the adsorption behavior of these gases. The binding force of all the doped-WS2 to the harmful gas molecules is much stronger than that of the pristine WS2. According to the results of adsorption energy, band structure, and state density, Al-doped WS2 has the potential to be used as NO and SO2 gas sensor, while P-doped WS2 is selective to NO. This work opens up a new reference for choosing appropriate doping types on 2D materials for noxious gas sensing.


2019 ◽  
Vol 33 (04) ◽  
pp. 1950044 ◽  
Author(s):  
X. Jia ◽  
L. An

The first-principles method based on density functional theory has been used to investigate the adsorption performance of NO/NO2 molecules on intrinsic, Ag-doped, Pt-doped and Au-doped graphene. Results show that graphene doped with Ag/Pt/Au has shorter final adsorption distance, larger adsorption energy and charge transfer amount with NO/NO2 molecules than intrinsic graphene, and the charge densities of doped graphene and NO/NO2 molecules overlap effectively. Therefore, doping graphene with noble metals can greatly enhance the adsorption between graphene and NO/NO2 molecules. Analysis also reveals that Au-doped graphene has the strongest adsorption effect on NO/NO2 molecules, followed by Ag-doped graphene, while Pt-doped graphene has the weakest role on the adsorption of NO/NO2 molecules. The work conducted in this research provides a theoretical guidance for the application of NO/NO2 gas sensors based on graphene.


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6454
Author(s):  
Sachin Navale ◽  
Mehrdad Shahbaz ◽  
Ali Mirzaei ◽  
Sang Sub Kim ◽  
Hyoun Woo Kim

Nanostructured semiconducting metal oxides (SMOs) are among the most popular sensing materials for integration into resistive-type gas sensors owing to their low costs and high sensing performances. SMOs can be decorated or doped with noble metals to further enhance their gas sensing properties. Ag is one of the cheapest noble metals, and it is extensively used in the decoration or doping of SMOs to boost the overall gas-sensing performances of SMOs. In this review, we discussed the impact of Ag addition on the gas-sensing properties of nanostructured resistive-based gas sensors. Ag-decorated or -doped SMOs often exhibit better responsivities/selectivities at low sensing temperatures and shorter response times than those of their pristine counterparts. Herein, the focus was on the detection mechanism of SMO-based gas sensors in the presence of Ag. This review can provide insights for research on SMO-based gas sensors.


2021 ◽  
Author(s):  
Zhihua Ying ◽  
Teng Zhang ◽  
Chao Feng ◽  
Fei Wen ◽  
Lili Li ◽  
...  

Abstract This present study reported a high-performance gas sensor, based on In2O3/ZnO composite material modified by polypeptides, with a high sensibility to NO2, where the In2O3/ZnO composite was prepared by a one-step hydrothermal method. A series of results through material characterization technologies showed the addition of polypeptides can effectively change the morphology and size of In2O3/ZnO crystals, and effectively improve the sensing performance of the gas sensors. Due to the single shape and small size, In2O3/ZnO composite modified by polypeptides increased the active sites on the surface. At the same time, the gas sensing properties of four different ratios of polypeptide-modified In2O3/ZnO gas sensors were tested. It was found that the In2O3/ZnO-10 material showed the highest response, excellent selectivity, and good stability at room temperature under UV light. In addition, the response of the In2O3/ZnO-10 gas sensor showed a strong linear relationship with the NO2 gas concentration. When the NO2 gas concentration was 20 ppm, the response time was as quick as 19s, and the recovery time was 57s. Finally, based on the obtained experimental characterization results and energy band structure analysis, a possible gas sensing mechanism is proposed.


2014 ◽  
Vol 974 ◽  
pp. 76-85 ◽  
Author(s):  
Ghenadii Korotcenkov ◽  
B.K. Cho

In this review different aspects of material and structural engineering of metal oxides aimed for application in conductometric gas sensors (chemiresistors) were analyzed. Results, mainly obtained for SnO2and In2O3–based sensors during surface functionalizing by noble metals have been used for showing an opportunity of material and structural engineering of metal oxides to optimize gas sensing characteristics.


Membranes ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 77
Author(s):  
Guangjun Chen ◽  
Lei Gan ◽  
Huihui Xiong ◽  
Haihui Zhang

Designing a high-performance gas sensor to efficiently detect the hazardous NH3 molecule is beneficial to air monitoring and pollution control. In this work, the first-principles calculations were employed to investigate the adsorption structures, electronic characteristics, and gas sensing properties of the pristine and B-, N-, P-, Al-, and Si-doped penta-graphene (PG) toward the NH3, H2S, and SO2 molecules. The results indicate that the pristine PG is insensitive to those toxic gases due to the weak adsorption strength and long adsorption distance. Nevertheless, the doping of B, N, Al, and Si (B and Al) results in the transition of NH3 (H2S and SO2) adsorption from physisorption to chemisorption, which is primarily ascribed to the large charge transfer and strong orbital hybridizations between gas molecules and doping atoms. In addition, NH3 adsorption leads to the remarkable variation of electrical conductivity for the B-, N-, and Si-doped PG, and the adsorption strength of NH3 on the B-, N-, and Si-doped PG is larger than that of H2S and SO2. Moreover, the chemically adsorbed NH3 molecule on the N-, B-, and Si-doped PG can be effectively desorbed by injecting electrons into the systems. Those results shed light on the potential application of PG-based nanosheets as reusable gas sensors for NH3 detection.


Author(s):  
Priya Gupta ◽  
Savita Maurya ◽  
Narendra Kumar Pandey ◽  
Vernica Verma

: This review paper encompasses a study of metal-oxide and their composite based gas sensors used for the detection of ammonia (NH3) gas. Metal-oxide has come into view as an encouraging choice in the gas sensor industry. This review paper focuses on the ammonia sensing principle of the metal oxides. It also includes various approaches adopted for increasing the gas sensitivity of metal-oxide sensors. Increasing the sensitivity of the ammonia gas sensor includes size effects and doping by metal or other metal oxides which will change the microstructure and morphology of the metal oxides. Different parameters that affect the performances like sensitivity, stability, and selectivity of gas sensors are discussed in this paper. Performances of the most operated metal oxides with strengths and limitations in ammonia gas sensing application are reviewed. The challenges for the development of high sensitive and selective ammonia gas sensor are also discussed.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 783 ◽  
Author(s):  
Andrea Gaiardo ◽  
David Novel ◽  
Elia Scattolo ◽  
Michele Crivellari ◽  
Antonino Picciotto ◽  
...  

The substrate plays a key role in chemoresistive gas sensors. It acts as mechanical support for the sensing material, hosts the heating element and, also, aids the sensing material in signal transduction. In recent years, a significant improvement in the substrate production process has been achieved, thanks to the advances in micro- and nanofabrication for micro-electro-mechanical system (MEMS) technologies. In addition, the use of innovative materials and smaller low-power consumption silicon microheaters led to the development of high-performance gas sensors. Various heater layouts were investigated to optimize the temperature distribution on the membrane, and a suspended membrane configuration was exploited to avoid heat loss by conduction through the silicon bulk. However, there is a lack of comprehensive studies focused on predictive models for the optimization of the thermal and mechanical properties of a microheater. In this work, three microheater layouts in three membrane sizes were developed using the microfabrication process. The performance of these devices was evaluated to predict their thermal and mechanical behaviors by using both experimental and theoretical approaches. Finally, a statistical method was employed to cross-correlate the thermal predictive model and the mechanical failure analysis, aiming at microheater design optimization for gas-sensing applications.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 3947
Author(s):  
Wei Wang ◽  
Qinyi Zhang ◽  
Ruonan Lv ◽  
Dong Wu ◽  
Shunping Zhang

High performance formaldehyde gas sensors are widely needed for indoor air quality monitoring. A modified layer of zeolite on the surface of metal oxide semiconductors results in selectivity improvement to formaldehyde as gas sensors. However, there is insufficient knowledge on how the thickness of the zeolite layer affects the gas sensing properties. In this paper, ZSM-5 zeolite films were coated on the surface of the SnO2 gas sensors by the screen printing method. The thickness of ZSM-5 zeolite films was controlled by adjusting the numbers of screen printing layers. The influence of ZSM-5 film thickness on the performance of ZSM-5/SnO2 gas sensors was studied. The results showed that the ZSM-5/SnO2 gas sensors with a thickness of 19.5 μm greatly improved the selectivity to formaldehyde, and reduced the response to ethanol, acetone and benzene at 350 °C. The mechanism of the selectivity improvement to formaldehyde of the sensors was discussed.


2021 ◽  
Author(s):  
Lanjuan Zhou ◽  
Sujing Yu ◽  
Yan Yang ◽  
Qi Li ◽  
Tingting Li ◽  
...  

In this paper, the effects of five noble metals (Au, Pt, Pd, Ag, Ru) doped MoSe2 on improving gas sensing performance were predicted through density functional theory (DFT) based on...


Sign in / Sign up

Export Citation Format

Share Document