scholarly journals Synthesis of Imidazolium based PILs and Investigation of Their Blend Membranes for Gas Separation

Membranes ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 164
Author(s):  
Thanasis Chouliaras ◽  
Aristofanis Vollas ◽  
Theophilos Ioannides ◽  
Valadoula Deimede ◽  
Joannis Kallitsis

Polymeric (ionic liquid) (PIL) copolymers bearing cationic imidazolium pendants and polar acrylic acid groups (P(VBCImY-co-AAx)), which both favor the interaction with CO2 molecules, have been synthesized and blended with film forming, high glass transition temperature aromatic polyether-based pyridinium PILs (PILPyr). The blend membranes based on the above combination have been prepared and characterized in respect to their thermal and morphological behavior as well as to their gas separation properties. The used copolymers and blends showed a wide range of glass transition temperatures from 32 to 286 °C, while blends exhibited two phase morphology despite the presence of polar groups in the blend components that could participate in specific interactions. Finally, the membranes were studied in terms of their gas separation behavior. It revealed that blend composition, counter anion type and acrylic acid molar percentage affect the gas separation properties. In particular, PILPyr-TFSI/P(VBCImTFSI-co-AA20) blend with 80/20 composition shows CO2 permeability of 7.00 Barrer and quite high selectivity of 103 for the CO2/CH4 gas pair. Even higher CO2/CH4. selectivity of 154 was achieved for PILPyr-BF4/P(VBCImBF4-co-AA10) blend with composition 70/30.

Vestnik MGSU ◽  
2015 ◽  
pp. 50-63
Author(s):  
Tat’yana Anatol’evna Matseevich ◽  
Marina Nikolaevna Popova ◽  
Andrey Aleksandrovich Askadskiy

Today great attention is paid to production and research of the mechanical and termal properties of nanocomposites based on polyimides. These polymers are heatresisting and possess the increased mechanical properties in wide range of temperatures. Various nanoparticles are introduced into polyimides: graphite nanotubes and flatparticles, the particles of SiO , the surface of which is modified, the particles of ZrOandmontmorillonite, etc.The authors analyzed the influence of nanoparticles on the glass transition temper-ature T and elastic modulus E of the polyimides based on 1,3-bis-(3,3’,4,4’-dicarboxy-phenoxy)benzene and 4,4’-bis-(4-aminophenoxy)biphenyl, and pyromellitic dianhydride and oxydianiline. Nanoparticles introduced in small amounts are produced of graphite and ZrO . The suggested ratios take into account the chemical structure of the polymer and nanoparticles, as well as the structure of their surface in case of chemical modification; the concentration of nanoparticles and their form, the number of polar groups on the surface. The number of polar groups and nanoparticles’ concentration have the greatest influence on T . The elastic modulus of nanocomposites depending on nanoparticles’ concentration is connected with van der Waals volume of the repeating unit of polymer and nanoparticle.


2018 ◽  
Vol 135 (44) ◽  
pp. 46845 ◽  
Author(s):  
Iman Akbarian ◽  
Afsaneh Fakhar ◽  
Elham Ameri ◽  
Morteza Sadeghi

2021 ◽  
Vol 22 (5) ◽  
pp. 2682
Author(s):  
Nazim Nassar ◽  
Felicity Whitehead ◽  
Taghrid Istivan ◽  
Robert Shanks ◽  
Stefan Kasapis

Crosslinking of hydroxypropyl methyl cellulose (HPMC) and acrylic acid (AAc) was carried out at various compositions to develop a high-solid matrix with variable glass transition properties. The matrix was synthesized by the copolymerisation of two monomers, AAc and N,N′-methylenebisacrylamide (MBA) and their grafting onto HMPC. Potassium persulfate (K2S2O8) was used to initiate the free radical polymerization reaction and tetramethylethylenediamine (TEMED) to accelerate radical polymerisation. Structural properties of the network were investigated with Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), modulated differential scanning calorimetry (MDSC), small-deformation dynamic oscillation in-shear, thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). The results show the formation of a cohesive macromolecular entity that is highly amorphous. There is a considerable manipulation of the rheological and calorimetric glass transition temperatures as a function of the amount of added acrylic acid, which is followed upon heating by an extensive rubbery plateau. Complementary TGA work demonstrates that the initial composition of all the HPMC-AAc networks is maintained up to 200 °C, an outcome that bodes well for applications of targeted bioactive compound delivery.


2013 ◽  
Vol 135 (3) ◽  
Author(s):  
Téguewindé Sawadogo ◽  
Njuki Mureithi

Having previously verified the quasi-steady model under two-phase flow laboratory conditions, the present work investigates the feasibility of practical application of the model to a prototypical steam generator (SG) tube subjected to a nonuniform two-phase flow. The SG tube vibration response and normal work-rate induced by tube-support interaction are computed for a range of flow conditions. Similar computations are performed using the Connors model as a reference case. In the quasi-steady model, the fluid forces are expressed in terms of the quasi-static drag and lift force coefficients and their derivatives. These forces have been measured in two-phase flow over a wide range of void fractions making it possible to model the effect of void fraction variation along the tube span. A full steam generator tube subjected to a nonuniform two-phase flow was considered in the simulations. The nonuniform flow distribution corresponds to that along a prototypical steam-generator tube based on thermal-hydraulic computations. Computation results show significant and important differences between the Connors model and the two-phase flow based quasi-steady model. While both models predict the occurrence of fluidelastic instability, the predicted pre-instability and post instability behavior is very different in the two models. The Connors model underestimates the flow-induced negative damping in the pre-instability regime and vastly overestimates it in the post instability velocity range. As a result the Connors model is found to underestimate the work-rate used in the fretting wear assessment at normal operating velocities, rendering the model potentially nonconservative under these practically important conditions. Above the critical velocity, this model largely overestimates the work-rate. The quasi-steady model on the other hand predicts a more moderately increasing work-rate with the flow velocity. The work-rates predicted by the model are found to be within the range of experimental results, giving further confidence to the predictive ability of the model. Finally, the two-phase flow based quasi-steady model shows that fluidelastic forces may reduce the effective tube damping in the pre-instability regime, leading to higher than expected work-rates at prototypical operating velocities.


2021 ◽  
Author(s):  
Omar Shaaban ◽  
Eissa Al-Safran

Abstract The production and transportation of high viscosity liquid/gas two-phase along petroleum production system is a challenging operation due to the lack of understanding the flow behavior and characteristics. In particular, accurate prediction of two-phase slug length in pipes is crucial to efficiently operate and safely design oil well and separation facilities. The objective of this study is to develop a mechanistic model to predict high viscosity liquid slug length in pipelines and to optimize the proper set of closure relationships required to ensure high accuracy prediction. A large high viscosity liquid slug length database is collected and presented in this study, against which the proposed model is validated and compared with other models. A mechanistic slug length model is derived based on the first principles of mass and momentum balances over a two-phase slug unit, which requires a set of closure relationships of other slug characteristics. To select the proper set of closure relationships, a numerical optimization is carried out using a large slug length dataset to minimize the prediction error. Thousands of combinations of various slug flow closure relationships were evaluated to identify the most appropriate relationships for the proposed slug length model under high viscosity slug length condition. Results show that the proposed slug length mechanistic model is applicable for a wide range of liquid viscosities and is sensitive to the selected closure relationships. Results revealed that the optimum closure relationships combination is Archibong-Eso et al. (2018) for slug frequency, Malnes (1983) for slug liquid holdup, Jeyachandra et al. (2012) for drift velocity, and Nicklin et al. (1962) for the distribution coefficient. Using the above set of closure relationships, model validation yields 37.8% absolute average percent error, outperforming all existing slug length models.


1981 ◽  
Vol 59 (1) ◽  
pp. 127-131 ◽  
Author(s):  
Alan N. Campbell

The properties named in the title have been determined by standard methods. Viscosity, molar volume, and orientation polarisation all indicate abnormalities of the nature of association between the components.The most interesting result is that of surface tension which indicates that, in the case of the binary system triethylamine–water, a surface layer of constant composition is formed over a wide range of total composition. When, by a rise in temperature of two or three degrees, this layer becomes unstable, it splits into two phases of different composition. The surface layer may then be instantaneously reformed and so on. A mechanism for the generation of a two-phase system is thus established. The data for the three-phase, isothermal, system are not so convincing, for reasons that are suggested.


The liquid-vapour equilibrium of the system methane-ethylene has been determined at 0, -42 , -78, -88 and -104° C over a wide range of pressures and the results are shown on a pressure-composition-temperature diagram and by a series of pressure-composition curves. The liquid-vapour equilibrium of the ternary system methane-ethane-ethylene has been determined at -104, -78 and 0° C. Values for the two binary systems methane-ethane and methane-ethylene and for the ternary system methane-ethane-ethylene are shown on a composite pressure-composition diagram.


Sign in / Sign up

Export Citation Format

Share Document