scholarly journals Effect of Sign-Alternating Cyclic Polarisation and Hydrogen Uptake on the Localised Corrosion of X70 Pipeline Steel in Near-Neutral Solutions

Metals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 245
Author(s):  
Alevtina Rybkina ◽  
Natalia Gladkikh ◽  
Andrey Marshakov ◽  
Maxim Petrunin ◽  
Andrei Nazarov

The effect of sign-alternating cycling polarisation (SACP) on the localised corrosion of X70pipeline steel in solutions of various compositions was studied. Localised corrosion of steel at anodic potentials was accelerated with an increase in the duration of the cathodic half-cycle, in the presence of a promoter of hydrogen absorption in aqueous electrolyte, and with an increase in the concentrations of chloride and bicarbonate ions. It was pointed out that the corrosion rate is determined by the amount of hydrogen absorbed by the steel. A quantitative indicator to determine the intensity of localised corrosion under SACP was suggested.

2021 ◽  
pp. 1-13
Author(s):  
Alevtina Rybkina ◽  
Natalia Gladkih ◽  
Andrey Marshakov

The effect of cyclic potential pulse (CIP) on the local corrosion of X70 pipeline steel in the solutions with various compositions was investigated. Local corrosion of steel increases with an increase in the duration of the cathode half-cycle of the CIP, in the presence of a promoter of hydrogen absorption and with an increase in the concentration of chloride and bicarbonate ions. A quantitative indicator is proposed, which determines the intensity of local corrosion under CIP


Author(s):  
Kaikai Li ◽  
Wei Wu ◽  
Guangxu Cheng ◽  
Yun Li ◽  
Haijun Hu ◽  
...  

Natural gas transmission pipeline is prone to internal corrosion due to the combination of corrosive impurities in the pipe (such as CO2, H2S and chlorides) and applied pressure of the pipeline, which seriously affects the safe operation of the pipeline. In this work, the corrosion behavior of a typical X70 pipeline steel was investigated by using potentiodynamic polarization and electrochemical impendence spectroscopy (EIS). The polarization and EIS data under different CO2 partial pressures (0–1 atm), H2S concentrations (0–150 ppm), chloride concentrations (0–3.5 wt%) and tensile stress (0–400 MPa) were obtained. The results show that corrosion rate increases with the increase of CO2 partial pressure and chloride concentration, respectively, while first increases and then decreases with the increase H2S concentrations. The corrosion rate is less affected by elastic tensile stress. In addition, a quantitative prediction model for corrosion rate of natural gas pipeline based on adaptive neuro-fuzzy inference system (ANFIS) was established by fitting the experimental data which maps the relationship between the key influencing factors (i.e. CO2 partial pressure, H2S concentration, chloride concentration and tensile stress) and the corrosion rate. The prediction results show that the relative percentage errors of the predicted and experimental values are relatively small. The prediction accuracy of the model satisfies the engineering application requirement.


2012 ◽  
Vol 48 (10) ◽  
pp. 1267 ◽  
Author(s):  
Zhiying WANG ◽  
Jianqiu WANG ◽  
En-hou HAN ◽  
Wei KE ◽  
Maocheng YAN ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2491
Author(s):  
Elena Garcia ◽  
Julio Torres ◽  
Nuria Rebolledo ◽  
Raul Arrabal ◽  
Javier Sanchez

The number of reinforced concrete structures subject to anoxic conditions such as offshore platforms and geological storage facilities is growing steadily. This study explored the behaviour of embedded steel reinforcement corrosion under anoxic conditions in the presence of different chloride concentrations. Corrosion rate values were obtained by three electrochemical techniques: Linear polarization resistance, electrochemical impedance spectroscopy, and chronopotenciometry. The corrosion rate ceiling observed was 0.98 µA/cm2, irrespective of the chloride content in the concrete. By means of an Evans diagram, it was possible to estimate the value of the cathodic Tafel constant (bc) to be 180 mV dec−1, and the current limit yielded an ilim value of 0.98 µA/cm2. On the other hand, the corrosion potential would lie most likely in the −900 mVAg/AgCl to −1000 mVAg/AgCl range, whilst the bounds for the most probable corrosion rate were 0.61 µA/cm2 to 0.22 µA/cm2. The experiments conducted revealed clear evidence of corrosion-induced pitting that will be assessed in subsequent research.


2010 ◽  
Vol 36 ◽  
pp. 176-181
Author(s):  
Xian Feng He ◽  
Shou Gang Zhao ◽  
Yuan Bao Leng

The corrosion of steel will have a bad impact on the safety of reinforced concrete structure. In severe cases, it may even be disastrous. In order to understand the impact of steel corrosion on the structure, tests are carried out to study corrosion and expansion rules of steel bars as well as the impact rules of corrosion on bond force between steel and concrete. The results show that wet and salty environment will result in steel corrosion; relatively minor corrosion will not cause expansion cracks of protection layers; when steel rust to a certain extent, it will cause cracks along the protection layer; when there exists minor corrosion in steel and the protection layer does not have expansion cracks, the bond force is still large and rapidly decreases as the corrosion rate increases.


2021 ◽  
Author(s):  
Weizhi Wang ◽  
Junying Hu ◽  
Xi Yuan ◽  
Li Zhou ◽  
Jiansheng Yu ◽  
...  

2021 ◽  
Author(s):  
Weizhi Wang ◽  
Junying Hu ◽  
Xi Yuan ◽  
Li Zhou ◽  
Jiansheng Yu ◽  
...  

2018 ◽  
Vol 186 ◽  
pp. 02001
Author(s):  
Teng-wei Zhu ◽  
Cheng-liang Miao ◽  
Zheng Cheng ◽  
Zhipeng Wang ◽  
Yang Cui ◽  
...  

The influence of the mechanical properties of X70 pipeline steel under different annealing temperature was studied. The corresponding microstructure was investigated by the Field Emission Scanning Electron Microscopy. The results showed that the yield strength and the tensile strength both experienced from rise to decline with the increase of annealing temperature. The grain sizes were coarse and a large amount of cementite precipitated due to preserving temperature above 550 °, which induced matrix fragmentation and deteriorate the -10 ° DWTT Toughness. There were little changes on the microstructure and mechanical properties when the annealing temperature was under 500 °.


Sign in / Sign up

Export Citation Format

Share Document