scholarly journals Recovery of Cerium Oxide Abrasive from an Abrasive–Glass Polishing Waste through Alkaline Roasting Followed by Water Leaching

Metals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 752
Author(s):  
Li-Pang Wang ◽  
Pei-Hsin Liu ◽  
Yan-Jhang Chen

Abrasive–glass polishing waste is generated from the polishing process of glass components by using cerium oxide abrasive, which contains the cerium oxide abrasive and the polished glass. This study attempted to recover the cerium oxide abrasive from the abrasive–glass polishing waste through removing the polished glass by alkaline roasting using sodium hydroxide (NaOH) followed by water leaching. The experimental results indicated that the polished glass in the abrasive–glass polishing waste could be fully removed under the optimal alkaline roasting and water leaching conditions of roasting temperature of 450 °C, mass ratio of polishing waste to NaOH of 1:1, roasting time of 30 min, leaching pH of 3, leaching temperature of 25 °C, and liquid–solid ratio of 25 mL/g. The characteristics including elemental composition, particle size distribution, mineralogical phases, and morphology of the recovered cerium oxide abrasive obtained under the optimal conditions were similar to those of the original unused one, which was suitable to be reused for polishing again.

Minerals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 437
Author(s):  
Bing-Xuan He ◽  
Yong Liang ◽  
Lue-Wei Xu ◽  
Long-Bin Shao ◽  
De-Gang Liu ◽  
...  

Rare Earth (RE) phosphors waste contains valuable rare Earth elements (REEs), such as cerium, terbium, yttrium, and europium. In industry, the process of NaOH roasting followed by acid leaching is usually used to extract the REEs from the waste in China. Using this process, the leaching efficiencies of cerium and terbium are clearly lower than those of other REEs, which results in uneven extraction of REEs in the waste and low total REE leaching efficiency. The key reason is that the trivalent cerium and terbium in the waste are oxidized into RE oxides during NaOH roasting, which are difficult to dissolve in acid solution. To solve this problem, an optimized process of controlling the oxygen concentration during NaOH roasting is proposed in this paper. The influences of the oxygen concentration, roasting temperature, roasting time, mass ratio of waste phosphor to NaOH, HCl solution concentration, acid leaching temperature, acid leaching time, and liquid–solid ratio on the REE leaching efficiency were investigated. Under the optimum conditions, the leaching efficiencies of cerium and terbium increased dramatically and the total REE leaching efficiency is 99.11%.


Processes ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1923
Author(s):  
Bo Wang ◽  
Qiaowen Yang

Every year, large amounts of selective catalytic reduction (SCR) catalysts with losing catalytic activity and failing to be regenerated need to be regenerated, which will result in acute pollution. Recycling valuable metals from spent SCR catalysts can not only solve environmental problems, but also save resources. The process of sodium roasting and water leaching is able to effectively extract vanadium (V) and tungsten (W) from spent SCR catalysts. To improve the efficiencies of V and W, different sodium additives were first investigated in the roasting process. The results revealed that the process of NaCl-NaOH composite roasting and water leaching showed superior leaching efficiencies of V and W, which can reach 91.39% and 98.26%, respectively, and simultaneously, it can be found that adding low melting point NaOH promoted mass transfer as compared with the melting points of different sodium additives. Next, a single-factor experiment was conducted to investigate different roasting conditions, such as roasting temperature, roasting time, mass ratio of sodium additive and catalyst, and mass ratio of NaCl and NaOH, on the leaching efficiencies of V and W. Then, a three-level and four-factor orthogonal experiment and a weight matrix analysis were used to optimize the roasting parameters. The results showed that roasting temperature had the most significant effect on the leaching efficiencies of V and W, and the optimal roasting conditions were as follows: the roasting temperature was 750 °C, the roasting time was 2.5 h, the mass ratio of sodium additive and catalyst was 2.5, and the mass ratio of NaCl and NaOH was 1.5. Under the optimal roasting conditions, the leaching efficiencies of V and W were 93.25% and 99.17%, respectively. The results of XRD analysis inferred that VO2 coming from the decomposition of VOSO4 in spent SCR catalysts may first oxidize into V2O5 and then react with sodium additives to produce NaVO3. The formation of titanium-vanadium oxide ((Ti0.5V0.5)2O3) was a part reason of hindering the leaching of vanadium. With the increase of roasting temperature, TiO2 converted into Na2Ti3O7, which indicated that the main structure of the catalyst was destroyed, and simultaneously, more characteristic peaks of sodium metavanadate and sodium tungstate appeared, thus enhancing the leaching of V and W. Finally, it can be seen that the process of NaCl-NaOH roasting and water leaching remained higher leaching efficiencies of V and W and lower roasting temperature by comparing with leaching efficiencies of V and W in different processes of recycling SCR catalyst. The process of NaCl-NaOH composite roasting and water leaching provided a strategy with a highly efficient and clean route to leach V and W from spent SCR catalyst. The orthogonal experiment and weight matrix analysis in our study can be used as a reference to optimize the reaction conditions of a multiple indexes experiment.


Minerals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1369
Author(s):  
Tülay Türk ◽  
Zeynep Üçerler ◽  
Fırat Burat ◽  
Gülay Bulut ◽  
Murat Olgaç Kangal

Potassium, which is included in certain contents in the structure of K-feldspar minerals, has a very important function in the growth of plants. Turkey hosts the largest feldspar reserves in the world and is by far the leader in feldspar mining. The production of potassium salts from local natural sources can provide great contributions both socially and economically in the agriculture industry along with glass production, cleaning materials, paint, bleaching powders, and general laboratory purposes. In this study, potassium extraction from K-feldspar ore with an 8.42% K2O content was studied using chloridizing (CaCl2) roasting followed by water leaching. Initially, to produce wollastonite and calcite concentrates, froth flotation tests were conducted on wollastonite-calcite ore after comminution. Thus, wollastonite and calcite concentrates with purities of 99.4% and 91.96% were successfully produced. Then, a calcite concentrate was combined with hydrochloric acid (HCl) under optimal conditions of a 1 mol/L HCl acid concentration, a 60 °C leaching temperature, and a 10 min leaching time to produce CaCl2. To bring out the importance of roasting before the dissolution process, different parameters such as roasting temperature, duration, and feldspar—CaCl2 ratios were tested. Under optimal conditions (a 900 °C roasting temperature, a 60 min duration, and a 1:1.5 feldspar—CaCl2 ratio), 98.6% of the potassium was successfully extracted by the water leaching process described in this article.


2020 ◽  
Vol 12 (11) ◽  
pp. 4662
Author(s):  
Li-Pang Wang ◽  
Yan-Jhang Chen ◽  
Yun-Chen Tso ◽  
Chia-Feng Sheng ◽  
Josiane Ponou ◽  
...  

Applying a cerium oxide abrasive to polish glass components generates a polishing waste containing the cerium oxide abrasive and the glass powder produced during polishing. This research applied the liquid–liquid–powder extraction method to separate the cerium oxide abrasive and the polished glass powder in an abrasive-glass polishing waste for recovering the cerium oxide abrasive. Two liquids of isooctane and water were utilized. The effectiveness of using a cationic and an anionic surfactant collector, i.e., dodecylamine acetate (DAA) and sodium oleate (NaOL), respectively, in improving their extraction and separation was investigated and compared. The results indicated that NaOL addition could improve the mutual separation of cerium oxide abrasive and glass powder but DAA could not, because the former could selectively improve the extraction of cerium oxide abrasive from the water phase to isooctane phase whereas the latter could improve that of both powders. Optimal separation for the cerium oxide abrasive and the polished glass powder in an abrasive-glass polishing waste were achieved by adding NaOL of 7.5 kg/ton at pH 7; the content of cerium oxide abrasive in the solid recovered from the isooctane phase was 96.4% with a recovery of 88.1%.


Author(s):  
Junzhao Han ◽  
Wenhua Chen

To limit velocity fluctuations and to achieve a controllable jerk value in a glass polishing process, a new velocity control algorithm is proposed based on nonuniform rational B-splines (NURBS). The key of this algorithm is replacing the traditional linear acceleration–deceleration with flexible NURBS acceleration–deceleration. Based on the linear acceleration–deceleration algorithm, the control points of the NURBS curve are confirmed, and the final velocity of the polishing wheel center is solved using the Preston equation. With jerk continuity and limitations of the servo system, nonlinear equations are constructed, and the weighting factors corresponding to the control points are obtained. Cubic velocity control equations can be derived from the obtained feature parameters, which include the final velocity, control points, weighting factors and knot vectors. Based on the proposed NURBS acceleration–deceleration algorithm, a fourth-order Runge–Kutta formula was used to obtain the initial points, and the Milne–Hamming equation was used to predict and correct the next point. The predictor-corrector interpolation algorithm for parametric trajectory was implemented during the polishing process. The experimental results indicate that the proposed approach guarantees limited fluctuations of the relative velocity at contact points and ensure smoother velocity changes at dangerous points.


2013 ◽  
Vol 734-737 ◽  
pp. 1033-1036
Author(s):  
Gui Fang Zhang ◽  
Peng Yan ◽  
Qing Rong Yang

Based on the benefication of the complex silicate ore containing scandium, the research about aid-leaching agent used in the leaching of the scandium concentrate was been conducted. And the suitable leaching agent and aid-leaching agent which the useful ions entered into leaching liquid and the harmful ions were kept in leaching residue were been found according to the experiment results. For the scandium of sample existed various complex silicate ore as isomorphism form, the research has adopted hydrochloric acid with aid-leaching agent to dissociate the silicate ore and make scandium entering into solution. The research results has shown that the scandium leaching rate could reach 92.06% under the optimal conditions which the hydrochloric acid concentration is 22.8%, the dosage of aid leaching agent is 6%, liquid solid ratio is 4:1, particle size of leaching material totally is less than 0.15mm and leaching time is 8h.


Crystals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 255
Author(s):  
Changqing Li ◽  
Haichao Zhang ◽  
Ma Tao ◽  
Xufeng Wang ◽  
Hang Li ◽  
...  

Calcium vanadate (CaV2O6), a new product of vanadium precipitation, was obtained from vanadium slag by sodium roasting-water leaching and calcium precipitation. The separation behavior of vanadium and silicon in vanadium slag during sodium roasting and water leaching was systematically studied, and micro-morphology and valence migration behavior of vanadium and Fe in vanadium slag, roasting slag, and residue were revealed. The Na2CO3 was added to the vanadium slag at 20% mass fraction, roasted at 790 ℃, and kept for 120 min, the roasted sample was added to the deionized aqueous solution with a liquid-solid ratio of (L/S) 5mL/g, and then heated at 90 ℃ for 60 min, 89.54% vanadium and 1.96% chromium were extracted. Sodium carbonate tends to combine with vanadium to form sodium vanadate, while silicon is easy to combine with Fe and Na to form acmite (NaFeSi2O6). When the molar ratio of N (Ca/V) is 0.6 and CaO, is added to adjust the pH of vanadium leaching solution to 6.7 ± 0.1 and precipitate 90 min at 90 ℃, vanadium is precipitated in the form of CaV2O6 with a purity of 95.69%, under these conditions, the precipitation ratio is 95.03%.


2012 ◽  
Vol 455-456 ◽  
pp. 1339-1344 ◽  
Author(s):  
Zhe Qi Li ◽  
Jing Yu Liu

Photodegradation ofp-nitrophenol catalyzed by ZnO/MWCNTs composite in water was investigated. The effects of pH, irradiation time, catalyst loading, initial substrate concentration and MWCNTs content on the degradation were investigated. Experiment results revealed that the optimal conditions were ap-nitrophenol concentration of 60.0 mg/L at pH 5.0 with catalyst loading of 10.0 g/L under solar irradiation for the illumination of 180 min. The highest efficiency on photodegradation ofp-nitrophenol can be achieved with an optimal MWCNTs/ZnO mass ratio of 0.16%. Possible decomposing mechanisms were also discussed. The repeatability of photocatalytic activity was tested. The photocatalyst was used ten cycles with degradation efficiency still higher than 95%. The results of the study showed the feasible and potential use of ZnO/MWCNTs composite in degradation of toxic organic pollutants.


2011 ◽  
Vol 236-238 ◽  
pp. 1199-1202
Author(s):  
Shu Fang Zhou ◽  
Chuan Shan Zhao ◽  
Jing Jing Wang

In this paper, a kind of sizing synergist,AKD,cationic rosin(CRS) and oil resistance agent were mixed in different proportions, we make it as a kind of new water repellent agent ,and for internal sizing. The best dosage and the composite ratio of the synergist, AKD, cationic rosin and oil resistance agent was discussed mainly in this experiment. And then the copy paper were tested of the substanceweight and contact angle, and compared with the water resistance when the domestic water repellent agent or AKD was added alone. Conclusions of this experiment are following: the optimal conditions were that the mass ratio of AKD and CRS is 6:4, the additive level of AKD and the cationic rosin is 6% (based on dry weight of pulp), the quantity of the sizing synergist is 0.5% , and no oil resistance agent was added, the effect of water resistance is best.


Sign in / Sign up

Export Citation Format

Share Document