scholarly journals Kinetics of Arsenic Surface Segregation in Scrap-Based Silicon Electrical Steel

Metals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 1
Author(s):  
Darja Steiner Petrovič

The segregation kinetics of surface-active, residual elements are investigated in an in situ study of annealing scrap-based silicon electrical steel sheet where the arsenic (As) surface segregation is highlighted. During annealing in the temperature range of 300–950 °C, different kinds of interactions between the segregated residual elements were observed. Attractive interactions between the segregands produced co-segregation, e.g., between Sn and Sb, whereas repulsive interactions resulted in site competition, e.g., between Sn and As. These competing interactions are strongly time dependent. In spite of there being twice as much Sn compared to As in the bulk material, the As prevailed in the surface enrichments of the polycrystalline silicon steel at 950 °C. The intensity of the As surface segregation in the temperature range 800–950 °C is proportional to the calculated amount of γ-austenite phase in the (α + γ) steel matrix. The detected phenomenon of the As versus Sn site competition could be valuable for the texture design and surface engineering of silicon steels with a thermodynamically stable two-phase (α + γ) region.

2020 ◽  
Vol 321 ◽  
pp. 12034
Author(s):  
Maciej Motyka ◽  
Waldemar Ziaja ◽  
Anna Baran-Sadleja ◽  
Karol Slemp

Microstructure and mechanical properties of heat treated martensitic two-phase α+β titanium alloys are in major perspective determined by results of martensite decomposition during tempering. The process of martensitic α’(α”) phase decomposition in titanium alloys, although utilized in industry for years, has not been sufficiently characterized in the scientific literature. Especially aspects of plastically deformed martensite decomposition is poorly described. Preliminary research results of water quenched Ti-6Al-4V alloy, subsequently cold deformed in compression and tempered at the temperature range of 600-900ºC for 1 and 2 h indicated that α’(α”) martensite undergoes strain hardening and deformed martensite laths exhibit tendency towards fragmentation and spheroidization during tempering at 900ºC. In the present paper, also α’(α”) martensite decomposition under compressive load applied at the temperature range of 600-900ºC is considered too. Based on light and scanning electron microscopy observations, thermal analyses and XRD measurements, the effect of plastic deformation on kinetics of martensite decomposition and morphology of α phase formed in the process is analysed.


1986 ◽  
Vol 1 (5) ◽  
pp. 646-651 ◽  
Author(s):  
S.W. Bronner ◽  
P. Wynblatt

The equilibrium surface composition of a Cu-0.83 at. % Ag alloy has been studied over the range from 600°–400°C. Above 450°C the alloy consists of a single phase, whereas below that temperature the material separates into copper-rich and silver-rich phases. The kinetics of equilibration appear to be controlled by grain boundary diffusion, leading to more rapid equilibration than expected on the basis of lattice diffusion-controlled kinetics. In the single-phase regime, silver segregates to the surface with an average enthalpy of segregation of −24 kJ/mol and an entropy of segregation of 0.94 J/mol K, and displays a trend of increasing equilibrium silver surface concentration with decreasing temperature. Theoretical estimates of the enthalpy of segregation yield the somewhat more negative values of −60 and −47 kJ/mol, respectively. In the two-phase regime, the surface continues to be enriched in silver, but the silver surface concentration decreases with decreasing temperature as a result of the rapidly decreasing equilibrium solubility of silver in copper.


1985 ◽  
Vol 50 (8) ◽  
pp. 1642-1647 ◽  
Author(s):  
Štefan Baláž ◽  
Anton Kuchár ◽  
Ernest Šturdík ◽  
Michal Rosenberg ◽  
Ladislav Štibrányi ◽  
...  

The distribution kinetics of 35 2-furylethylene derivatives in two-phase system 1-octanol-water was investigated. The transport rate parameters in direction water-1-octanol (l1) and backwards (l2) are partition coefficient P = l1/l2 dependent according to equations l1 = logP - log(βP + 1) + const., l2 = -log(βP + 1) + const., const. = -5.600, β = 0.261. Importance of this finding for assesment of distribution of compounds under investigation in biosystems and also the suitability of the presented method for determination of partition coefficients are discussed.


Author(s):  
Allan Matthews ◽  
Adrian Leyland

Over the past twenty years or so, there have been major steps forward both in the understanding of tribological mechanisms and in the development of new coating and treatment techniques to better “engineer” surfaces to achieve reductions in wear and friction. Particularly in the coatings tribology field, improved techniques and theories which enable us to study and understand the mechanisms occurring at the “nano”, “micro” and “macro” scale have allowed considerable progress to be made in (for example) understanding contact mechanisms and the influence of “third bodies” [1–5]. Over the same period, we have seen the emergence of the discipline which we now call “Surface Engineering”, by which, ideally, a bulk material (the ‘substrate’) and a coating are combined in a way that provides a cost-effective performance enhancement of which neither would be capable without the presence of the other. It is probably fair to say that the emergence and recognition of Surface Engineering as a field in its own right has been driven largely by the availability of “plasma”-based coating and treatment processes, which can provide surface properties which were previously unachievable. In particular, plasma-assisted (PA) physical vapour deposition (PVD) techniques, allowing wear-resistant ceramic thin films such as titanium nitride (TiN) to be deposited on a wide range of industrial tooling, gave a step-change in industrial productivity and manufactured product quality, and caught the attention of engineers due to the remarkable cost savings and performance improvements obtained. Subsequently, so-called 2nd- and 3rd-generation ceramic coatings (with multilayered or nanocomposite structures) have recently been developed [6–9], to further extend tool performance — the objective typically being to increase coating hardness further, or extend hardness capabilities to higher temperatures.


Metals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 48
Author(s):  
Wenjun Song ◽  
Min Lei ◽  
Mingpan Wan ◽  
Chaowen Huang

In this study, the phase transformation behaviour of the carburised layer and the matrix of 23CrNi3Mo steel was comparatively investigated by constructing continuous cooling transformation (CCT) diagram, determining the volume fraction of retained austenite (RA) and plotting dilatometric curves. The results indicated that Austenite formation start temperature (Ac1) and Austenite formation finish temperature (Ac3) of the carburised layer decreased compared to the matrix, and the critical cooling rate (0.05 °C/s) of martensite transformation is significantly lower than that (0.8 °C/s) of the matrix. The main products of phase transformation in both the carburised layer and the matrix were martensite and bainite microstructures. Moreover, an increase in carbon content resulted in the formation of lamellar martensite in the carburised layer, whereas the martensite in the matrix was still lath. Furthermore, the volume fraction of RA in the carburised layer was higher than that in the matrix. Moreover, the bainite transformation kinetics of the 23CrNi3Mo steel matrix during the continuous cooling process indicated that the mian mechanism of bainite transformation of the 23CrNi3Mo steel matrix is two-dimensional growth and one-dimensional growth.


In the first paper of this series (Burgoyne 1937) the kinetics of the isothermal oxidation above 400° C of several aromatic hydrocarbons was studied. The present communication extends this work to include the phenomena of ignition in the same temperature range, whilst the corresponding reactions below 400° C form the subject of further investigations now in progress. The hydrocarbons at present under consideration are benzene, toluene, ethylbenzene, n -propylbenzene, o-, m - and p -xylenes and mesitylene.


2013 ◽  
Vol 212 ◽  
pp. 127-132 ◽  
Author(s):  
Henryk Kania

In the paper the author presents the results of tests defining the characteristics of behaviour of Sandelin steel in the high-temperature galvanizing process. The growth kinetics of hot-dip zinc coatings on the substrate of 0.05% Si steel in the temperature range of 540-580°C has been established. The structure of the coatings and their phase composition have been developed and the chemical composition of structural components of the coating has be defined. It has been determined that the coating is composed of a compact layer δ1 and an area of a two-phase mixture of δ1 and Zn. The conducted tests confirmed the presence of phase Γ1 , which does not form a continuous layer but it forms individual precipitates which are irregular in shape. The growth kinetics of the coating indicates that an increase in temperature causes a decrease in the coating thickness, which might prove that dissolving processes prevailed over the processes of diffuse coating growth.


Sign in / Sign up

Export Citation Format

Share Document