scholarly journals Dynamic Deformation Behaviour of Chiral Auxetic Lattices at Low and High Strain-Rates

Metals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 52
Author(s):  
Anja Mauko ◽  
Tomáš Fíla ◽  
Jan Falta ◽  
Petr Koudelka ◽  
Václav Rada ◽  
...  

The mechanical behaviour of three different auxetic cellular structures, hexa-chiral 2D, tetra-chiral 2D and tetra-chiral 3D, was experimentally investigated in this study. The structures were produced with the powder bed fusion method (PBF) from an austenitic stainless steel alloy. The fundamental material mechanical properties of the sample structures were determined with classic quasi-static compressive tests, where the deformation process was captured by a high-resolution digital camera. The Split Hopkinson Pressure Bar (SHPB) apparatus was used for dynamic impact testing at two impact velocities to study the strain-rate dependency of the structures. Two synchronised high-speed cameras were used to observe the impact tests. The captured images from both quasi-static and dynamic experiments were processed using a custom digital image correlation (DIC) algorithm to evaluate the displacement/strain fields and the Poisson’s ratio. Predominant auxetic behaviour was observed in all three structures throughout most of the deformation process both under quasi-static and impact loading regimes. The tetra-chiral 2D structure showed the most significant auxetic behaviour. Significant stress enhancement in all tested structures was observed in dynamic testing. The Poisson’s ratio strain-rate dependency was confirmed for all three auxetic structures.

2010 ◽  
Vol 38 (3) ◽  
pp. 975-983 ◽  
Author(s):  
Cecilia Persson ◽  
Sam Evans ◽  
Rainy Marsh ◽  
Jon L. Summers ◽  
Richard M. Hall

2018 ◽  
Vol 183 ◽  
pp. 02045 ◽  
Author(s):  
Tomáš Fíla ◽  
Petr Zlámal ◽  
Jan Falta ◽  
Tomáš Doktor ◽  
Petr Koudelka ◽  
...  

In this paper, a split Hopkinson pressure bar (SHPB) was used for impact loading of an auxetic lattice (structure with negative Poisson’s ratio) at a given strain-rate. High strength aluminum and polymethyl methacrylate bars instrumented with foil strain-gauges were used for compression of an additively manufactured missing-rib auxetic lattice. All experiments were observed using a high-speed camera with frame-rate set to approx. 135.000 fps. High-speed images were synchronized with the strain-gauge records. Dynamic equilibrium in the specimen was analyzed and optimized pulse-shaping was introduced in the selected experiments. Longitudinal and lateral in-plane displacements and strains were evaluated using digital image correlation (DIC) technique. DIC results were compared with results obtained from strain-gauges and were found to be in good agreement. Using DIC, it was possible to analyze in-plane strain distribution in the specimens and to evaluate strain dependent Poisson’s ratio of the auxetic structure.


2008 ◽  
Vol 22 (09n11) ◽  
pp. 1165-1170 ◽  
Author(s):  
HIROFUMI MINAMOTO ◽  
ROBERT SEIFRIED ◽  
PETER EBERHARD ◽  
SHOZO KAWAMURA

Impact processes are often analyzed using the coefficient of restitution which represents the kinetic energy loss during impact. In this paper the effect of strain rate dependency of the yield stress on the coefficient of restitution is investigated experimentally and numerically for the impact of a steel sphere against a steel rod. Finite Element simulations using strain-rate dependent material behavior are carried out. In addition, Finite Element simulations with elastic-plastic material behavior, which ignore the strain rate dependency, are carried out as well as elastic material behavior. Comparisons between the experiments and the simulations using strain-rate dependent material behavior show good agreement, and also prove the strong dependency of the coefficient of restitution on the strain rate dependency of the yield stress for steel. The results from both, the experiments and the simulations show also the strong influence of the wave propagation in the rod on the coefficient of restitution.


2014 ◽  
Vol 566 ◽  
pp. 134-139 ◽  
Author(s):  
Hiroyuki Yamada ◽  
Ryo Okui ◽  
Nagahisa Ogasawara ◽  
Hidetoshi Kobayashi ◽  
Kinya Ogawa

The compressive properties of foamed polyethylene (PE) film with a closed cell for electronic devices have been investigated. A commercial closed cell foamed PE film with a density of 330 kg/m3 was used. Quasi-static testing was carried out at strain rates of 10−3 to 10−1 s−1. The strain rate of the impact test was approximately 105 s−1 by means of split Hopkinson pressure bar method. Within the set of experiments, the compressive stress increased with the strain rate in both the quasi-static and impact test. In particular, the flow stress increased substantially with the increasing strain rate in the impact deformation. At strains of less than 0.4, the trapped air was locally compressed within the cells, which led to the strain rate dependency of strength in the quasi-static test and the impact test.


2021 ◽  
Vol 250 ◽  
pp. 05014
Author(s):  
Puneeth Jakkula ◽  
Georg Ganzenmüller ◽  
Florian Gutmann ◽  
Stefan Hiermaier

This work investigates the strain rate sensitivity of the aluminiummagnesium-scandium alloy Scalmalloy, which is used extensively for additive manufacturing of lightweight structures. This high strength aluminium alloy combines very good weldability, machinability and mechanical strength: it can be heat-treated to reach nominal ultimate tensile strengths in excess of 500 MPa. We report tensile tests at strain rates ranging from 10−3 /s to 103 /s at room temperature. It is well known that Al-Mg alloys exhibit a negative strain rate dependency in combination with serrated flow caused by the Portevin-Le Chatelier effect, which describes the interaction of Mg solutes with dislocation propagations. In contrast, in Al-Sc alloys, the flow stress increases with increasing strain rate and displays positive strain rate dependency. Additionally, the presence of Sc in the form of Al3-Sc provides a fine-grained microstructure which allows higher tensile and fatigue strength. This research shows how these combined effects interact in the case of Scalmalloy, which contains both Mg and Sc. Tests are performed at quasi-static, intermediate and high strain rates with a servohydraulic testing machine and a Split-Hopkinson tension bar. Local specimen strain was performed using 2D Digital Image Correlation.


2013 ◽  
Vol 135 (10) ◽  
Author(s):  
M. D. Farrell ◽  
P. E. Riches

Existing experimental data on the Poisson's ratio of nucleus pulposus (NP) tissue is limited. This study aims to determine whether the Poisson's ratio of NP tissue is strain-dependent, strain-rate-dependent, or varies with axial location in the disk. Thirty-two cylindrical plugs of bovine tail NP tissue were subjected to ramp-hold unconfined compression to 20% axial strain in 5% increments, at either 30 μm/s or 0.3 μm/s ramp speeds and the radial displacement determined using biaxial video extensometry. Following radial recoil, the true Poisson's ratio of the solid phase of NP tissue increased linearly with increasing strain and demonstrated strain-rate dependency. The latter finding suggests that the solid matrix undergoes stress relaxation during the test. For small strains, we suggest a Poisson's ratio of 0.125 to be used in biphasic models of the intervertebral disk.


2021 ◽  
Vol 60 (1) ◽  
pp. 145-157
Author(s):  
Yi Luo ◽  
Ke Yuan ◽  
Lumin Shen ◽  
Jiefu Liu

Abstract In this study, a series of in-plane hexagonal honeycombs with different Poisson's ratio induced by topological diversity are studied, considering re-entrant, semi-re-entrant and convex cells, respectively. The crushing strength of honeycomb in terms of Poisson's ratio is firstly presented. In the previous research, we have studied the compression performance of honeycomb with different negative Poisson's ratio. In this study, a comparative study on the local impact resistance of different sandwich panels is conducted by considering a spherical projectile with low to medium impact speed. Some critical criteria (i.e. local indentation profile, global deflection, impact force and energy absorption) are adopted to analyze the impact resistance. Finally, an influential mechanism of Poisson's ratio on the local impact resistance of sandwich panel is studied by considering the variation of core strength and post-impact collapse behavior.


2021 ◽  
Author(s):  
Adanma Akoma ◽  
Kevin Sala ◽  
Chase Sheeley ◽  
Lesley D. Frame

Abstract Determination of flow stress behavior of materials is a critical aspect of understanding and predicting behavior of materials during manufacturing and use. However, accurately capturing the flow stress behavior of a material at different strain rates and temperatures can be challenging. Non-uniform deformation and thermal gradients within the test sample make it difficult to match test results directly to constitutive equations that describe the material behavior. In this study, we have tested AISI 9310 steel using a Gleeble 3500 physical simulator and Digital Image Correlation system to capture transient mechanical properties at elevated temperatures (300°C – 600°C) while controlling strain rate (0.01 s-1 to 0.1 s-1). The data presented here illustrate the benefit of capturing non-uniform plastic strain of the test specimens along the sample length, and we characterize the differences between different test modes and the impact of the resulting data that describe the flow stress behavior.


Sign in / Sign up

Export Citation Format

Share Document