scholarly journals Using Intercritical CCT Diagrams and Multiple Linear Regression for the Development of Low-Alloyed Advanced High-Strength Steels

Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1768
Author(s):  
Bryan Y. Navarrete Pino ◽  
Antonio A. Torres Castillo ◽  
Emmanuel J. Gutiérrez Castañeda ◽  
Luis A. Espinosa Zúñiga ◽  
Lorena Hernández Hernández ◽  
...  

The present work presents a theoretical and experimental study regarding the microstructure, phase transformations and mechanical properties of advanced high-strength steels (AHSS) of third generation produced by thermal cycles similar than those used in a continuous annealing and galvanizing (CAG) process. The evolution of microstructure and phase transformations were discussed from the behavior of intercritical continuous cooling transformation diagrams calculated with the software JMatPro, and further characterization of the steel by scanning electron microscopy, optical microscopy and dilatometry. Mechanical properties were estimated with a mathematical model obtained as a function of the alloying elements concentrations by multiple linear regression, and then compared to the experimental mechanical properties determined by uniaxial tensile tests. It was found that AHSS of third generation can be obtained by thermal cycles simulating CAG lines through modifications in chemistry of a commercial AISI-1015 steel, having an ultimate tensile strength of UTS = 1020–1080 MPa and an elongation to fracture of Ef = 21.5–25.3%, and microstructures consisting of a mixture of ferrite phase, bainite microconstituent and retained austenite/martensite islands. The determination coefficient obtained by multiple linear regression for UTS and Ef was R2 = 0.94 and R2 = 0.84, respectively. In addition, the percentage error for UTS and Ef was 2.45–7.87% and 1.18–16.27%, respectively. Therefore, the proposed model can be used with a good approximation for the prediction of mechanical properties of low-alloyed AHSS.

Metals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1051 ◽  
Author(s):  
António B. Pereira ◽  
Rafael O. Santos ◽  
Bruno S. Carvalho ◽  
Marilena C. Butuc ◽  
Gabriela Vincze ◽  
...  

To meet the demands of vehicular safety and greenhouse gas emission reduction, the automotive industry is increasingly using advanced high strength steels (AHSS) in the production of the components. With the development of the new generation of AHSS, it is essential to study their behavior towards manufacturing processes used in the automotive industry. For this purpose, the welding capability of newly developed third-generation Gen3 980T steel was investigated using the Nd:YAG (Neodymium:Yittrium Aluminum Garnet) laser-welding with different parameter conditions. The analysis was made by uniaxial tensile tests, micro-hardness, Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD). The criteria used to evaluate the quality of the weld were the distance between the fracture and the weld bead and the surface finish. A relationship between the quality of the weld and the energy density was observed, expressed by a partial penetration for values below the optimal, and by irregularities in the weld bead and a high number of spatters for the values above the optimal.


Author(s):  
Tarun Nanda ◽  
Vishal Singh ◽  
Virender Singh ◽  
Arnab Chakraborty ◽  
Sandeep Sharma

The automobile industry is presently focusing on processing of advanced steels with superior strength–ductility combination and lesser weight as compared to conventional high-strength steels. Advanced high-strength steels are a new class of materials to meet the need of high specific strength while maintaining the high formability required for processing, and that too at reasonably low cost. First and second generation of advanced high-strength steels suffered from some limitations. First generation had high strength but low formability while second generation possessed both strength and ductility but was not cost effective. Amongst the different types of advanced high-strength steels grades, dual-phase steels, transformation-induced plasticity steels, and complex phase steels are considered as very good options for being extended into third generation advanced high-strength steels. The present review presents the various processing routes for these grades developed and discussed by different authors. A novel processing route known as quenching and partitioning route is also discussed. The review also discusses the resulting microstructures and mechanical properties achieved under various processing conditions. Finally, the key findings with regards to further research required for the processing of advanced high-strength steels of third generation have been discussed.


2016 ◽  
Vol 879 ◽  
pp. 1933-1938 ◽  
Author(s):  
Richard G. Thiessen ◽  
Georg Paul ◽  
Roland Sebald

Third-Generation advanced high strength steels are being developed with the goal of reducing the body-in-white weight while simultaneously increasing passenger safety. This requires not only the expected increase in strength and elongation, but also improved local formability. Optimizing elongation and formability were often contradictory goals in dual-phase steel developments. Recent results have shown that so-called "quench and partitioning" (Q&P) concepts can satisfy both requirements [1]. Many Q&P-concepts have been studied at thyssenkrupp Steel Europe. Thorough investigation of the microstructure has revealed relationships between features such as the amount, morphology and chemical stability of the retained austenite and the obtained mechanical properties. An evaluation of the lattice strain by means of electron-back-scattering-diffraction has also yielded a correlation to the obtained formability. The aim of this work is to present the interconnection between these microstructural features and propose hypotheses for the explanation of how these features influence the macroscopically observed properties.


2021 ◽  
Author(s):  
Muhammad Sohaib Khan

Microstructural characterization and mechanical properties of spot welded dissimilar advanced high strength steels


Sign in / Sign up

Export Citation Format

Share Document