scholarly journals Numerical Analysis and Parameter Optimization of Wear Characteristics of Titanium Alloy Cross Wedge Rolling Die

Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1998
Author(s):  
Zhanshuo Peng ◽  
Hongchao Ji ◽  
Xiaomin Huang ◽  
Baoyu Wang ◽  
Wenchao Xiao ◽  
...  

Cross wedge rolling has the advantages of high production efficiency, good product quality, high material utilization, environmental protection, and low cost. It is one of the best processing methods for producing shaft blanks. In this paper, a cross wedge rolling die of TC4 titanium alloy is studied. Based on the Archard wear model, a modified model suitable for cross wedge rolling die wear analysis is derived through finite element simulation. Then, the modified Archard wear model is imported into Deform-3D software for finite element analysis. Orthogonal experimental design is used to combine and analyze different process parameters. Finally, the beetle antennae search (BAS)-genetic algorithm (GA)-back propagation neural network (BPNN) algorithm is used to predict the degree of die wear and to optimize the simulation parameters, which can acquire the process parameters that have the least impact on die wear. The results show that the wear distributions of cross wedge rolling tools is uneven. In general, the most serious areas are basically concentrated in the wedge-shaped inclined plane and rectangular edge lines. The reason is that the tangential force and radial force received by the die are relatively large, which leads to increased wear. Moreover, the temperature change is most severe on the wedge-shaped ridge line. When in contact with the workpiece, the temperature rises sharply, which makes the local temperature rise, the mold hardness decrease, and the wear accelerate. Through response surface method (RSM) analysis, it is concluded that the deformation temperature is the main factor affecting wear depth, followed by the forming angle, and that there is an interaction between the two factors. Finally, the feasibility of the BAS-GA-BP algorithm for optimizing the wear behavior of dies is verified, which provides a new process parameter optimization method for the problem of die wear in the cross wedge rolling process.

2011 ◽  
Vol 314-316 ◽  
pp. 979-983
Author(s):  
Tie Jun Ma ◽  
Xi Chen ◽  
Wen Ya Li

The orthogonal experimental design was conducted for linear friction welding of Ti-6Al-4V titanium alloy (TC4). The friction power and joint temperature were collected during the welding process. The influence of process parameters on the axial shortening was analyzed. The suitable process parameters were determined by investigating the joint appearance, the requirement of axial shortening and welding variables during welding. The results provide important reference for establishing process parameters of linear friction welding in practice.


2011 ◽  
Vol 675-677 ◽  
pp. 921-924 ◽  
Author(s):  
Ming Wei Wang ◽  
Chun Yan Wang ◽  
Li Wen Zhang

Vacuum hot bulge forming (VHBF) is becoming an increasingly important manufacturing process for titanium alloy cylindrical workpiece in the aerospace industries. Finite element simulation is an essential tool for the specification of process parameters. In this paper, a two-dimensional nonlinear thermo-mechanical couple FE model was established. Numerical simulation of vacuum hot bulge forming of titanium alloy cylindrical workpiece was carried out using FE analysis software MSC.Marc. The effects of process parameter on vacuum hot bulge forming of BT20 titanium alloy cylindrical workpiece was analyzed by numerical simulation. The proposed an optimized vacuum hot bulge forming process parameters and die size. And the corresponding experiments were carried out. The simulated results agreed well with the experimental results.


2016 ◽  
Vol 687 ◽  
pp. 125-132 ◽  
Author(s):  
Zbigniew Pater ◽  
Tomasz Bulzak ◽  
Janusz Tomczak

This paper deals with the issue of the helicopter SW4 rear gear driving shaft forming. It was assumed that this shaft will be made from titanium alloy Ti6Al4V and it will be formed by means of cross-wedge rolling technology (CWR). It was also assumed that rolling will be realized in double configuration, which will guarantee axial symmetry of forming forces. The conception of tools guaranteeing the CWR process realization and numerical analysis results verifying the assumed CWR process parameters of the subject shaft were presented. Tests of shaft rolling in laboratory conditions at Lublin University of Technology were made, in the result of which the possibility of forming by means of CWR of a driving shaft, manufactured from titanium alloy Ti6Al4V, of the helicopter SW4 rear gear was verified.


2014 ◽  
Vol 722 ◽  
pp. 140-146
Author(s):  
Wen Juan Zhang ◽  
Long Wu ◽  
Gang Chen

In this paper the drawing process of Box-torque was simulated by Dynaform, which is FEM simulation software. The process parameters, which affected the quality of forming, were optimized by finite element simulation. The emphasis was focus on the optimization of draw-bead and BHF and data were summarized from the optimization graphs. In this simulation, lengthways draw-bead was set on the technical face for reducing or eliminating wrinkle. It was innovation difference from the usual that the draw-bead was set on binder. Finally the correctness of simulation was approved by comparing the optimization of simulation with the data of experimentation.


2018 ◽  
Vol 913 ◽  
pp. 168-175
Author(s):  
Xian Ye Liang ◽  
Guang Bao Mi ◽  
Liang Ju He ◽  
Pei Jie Li

The abnormal local friction and wear phenomena usually generate during the service of the titanium alloy rotor /stator parts of the aero engine compressor under high temperature conditions. This phenomenon is the main cause of the occurrence of titanium fire failure and has great harm. In the present investigation the friction and wear behavior of the combustion resistant titanium alloy at high temperature was studied by finite element numerical simulation and experimental verification of the pin-on-disk model. Firstly, the geometrical model of the round bottom pin-on-disk contact was established. Then, the friction process was simulated by the Coulomb friction model. The ALE technique of ABAQUS was applied to move the contact nodes and update the grid. The finite element simulation of the ARCHARD wear model was realized. In order to deal with the increasing contact area, a simplify wear direction was proposed. Finally, the wear depth and volume was calculated and the wear law at 500 °C -900 °C was revealed. The results show that the wear process is gentle at the temperature of 500-700 °C, and the wear depth is within 0.08mm when the sliding distance reaches 1800m. When the temperature exceeds 800 °C, the wear rate increased sharply and the wear depth beyond 0.1mm, the FE result is consistent with the test results.


2011 ◽  
Vol 101-102 ◽  
pp. 396-399
Author(s):  
Xue Dao Shu ◽  
Le Ping Chen ◽  
Xin Hong Wei

Aimed at preventing the problems of axial movement, step blemish and rolling overlap piece of skins which make from the imbalance of axial and tangential force because of asymmetry of parts in size and shape, the paper adopted finite element method (FEM) to simulate CWR technique of typical asymmetric shaft part, and analysis systematically axial force and axial displacement. Then we can judge axial offset by axial displacement of central point of billet. The results of the study indicate that FEM can manifest the axial deformation of asymmetric shaft parts in CWR, which provides theoretical foundation for the promotion of CWR technology in the application of asymmetric shaft parts manufacture.


2021 ◽  
Vol 13 (2) ◽  
pp. 168781402199651
Author(s):  
Jia Li ◽  
Hongzhi Yan ◽  
Minghao Lin ◽  
Mengkai Cai ◽  
Xuan Hu

A formula is proposed based on Archard’s wear model to calculate wedge wear depth in a positive continuous engagement (PCE)-type sprag clutch with double-disc inner cam wedge in the overrun state. Methods to solve for the equation parameters are proposed. Using a sprag clutch with an M50 steel wedge as an example, wedge wear depth variation over time under high temperatures was analyzed. An easy-to-clamp wedge was designed and a high-temperature abrasion testing machine was used to test the wedge. The worn surface profile was observed using a three-dimensional profiler and the wedge wear depth was obtained. The effects of lubrication, temperature and speed on wear were analyzed using mixed-level orthogonal experimental design. Results show that the theoretical values are consistent with test values. Therefore, the model can be used to calculate wear accurately for the overrunning sprag clutch. Lubrication affects wear depth significantly, whereas temperature has a smaller effect and speed has very little influence. Within the experimental scope, when the temperature increased by 1°C, the wear depth increased by approximately 0.0145 μm and when the speed increased by approximately 1 time/minute, the wear depth increased by 0.00854 μm. These results provide theoretical support for optimal sprag clutch design.


2014 ◽  
Vol 665 ◽  
pp. 26-29
Author(s):  
Shu Guo Zhao ◽  
Cheng Cheng ◽  
Cheng Long Li

Laser cladding technology is used to prepare TC11 titanium alloy surface coated CBN. Through the finite element method to simulate the movement of scratch experiment. When coating is under normal force and tangential force, through changing the thickness of the layers , the coating crack length and width of crack, coating in force is analyzed when the interface stress affects on coating.Simulations that the interface stress value of 0.2mm coating reach to 1.485Gpa, The interface stress value of 0.5mm crack length reach to 0.3707Gpa, The interface stress value of 0.06mm crack width reach to 0.2234Gpa.


2016 ◽  
Vol 861 ◽  
pp. 207-215 ◽  
Author(s):  
Zhao Hui Wang ◽  
Cheng Hao Luan ◽  
Bao Ju Li ◽  
Jia Tai Yang

Taking the forging die of an automobile differential shell as example, the influence of some die forging process parameters and die structure parameters on the die wear was investigated. Based on a modified Archard wear model and the application of finite element method simulation, the die wear depth was calculated under a steady state temperature field. Within the scope of the experimental data, the research shows that: with the increase of billet preheating temperature, the wear is reduced gradually. Improving die preheating temperature, the wear increases gradually. When the forming speed is 300mm/s~400mm/s, the wear value decreases first and then increases.When the forming speed is over than 400mm/s, the change of wear value is not obvious. Increasing flash thickness and round radius, the wear value reduces gradually.


2015 ◽  
Vol 6 (2) ◽  
pp. 8
Author(s):  
Adam Horváth ◽  
Istvan Oldal ◽  
Gabor Kalácska ◽  
Matyas Andó

The aim of this study is to define optimal construction of brake piston (material, seal position) in caliper. Stress level and distribution, deformation and weight were examined to find optimal thickness where seal position (seal in caliper, seal in piston) was changed. Three materials were examined in finite element software (2D axisymmetric model): aluminium alloy (3.4335), steel (1.0039) and titanium alloy (3.7165). Pistons parameter tested: diameter 44 mm, height 29 mm, If the material is aluminium alloy the wall thickness is 2.69 mm, in case of steel the thickness is 4.02 mm when the seal is in the groove of piston. When the piston material is titanium alloy, the wall thickness is 0.8 mm having the seal in the caliper. The weight is critical issue in brake systems, so, the optimal wall thickness defines then piston weight. Weight of aluminium alloy is 0.045 kg, weight of steel is 0.153 kg and weight of titanium alloy is 0.047 kg. These weights show that aluminium alloy piston offer the lightest construction in case of maximum pressure 15 MPa.


Sign in / Sign up

Export Citation Format

Share Document