scholarly journals Corrosion Resistance of Ultrathin Two-Dimensional Coatings: First-Principles Calculations towards In-Depth Mechanism Understanding and Precise Material Design

Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2011
Author(s):  
Tian-Yu Sun ◽  
Yu Hao ◽  
Ying-Hao Wu ◽  
Wen-Jie Zhao ◽  
Liang-Feng Huang

In recent years, ultrathin two-dimensional (2D) coatings, e.g., graphene (Gr) and hexagonal boron nitride (h-BN), are intriguing research foci in the field of anticorrosion because their high air stability, excellent impermeability, high optical transparency, and atomistic thickness have endowed them with attractive anticorrosion applications. The microstructure of 2D coatings, coating–substrate interactions, and properties of 2D coatings on substrates in a variety of environmental conditions (e.g., at different temperatures, stresses, and pH values) are the key factors governing the anticorrosion performance of 2D coatings and are among the central topics for all 2D-coating studies. For many conventional experimental measurements (e.g., microscopy and electrochemical methods), there exist challenges to acquire detailed information on the atomistic mechanisms for the involved subnanometer scale corrosion problems. Alternatively, as a precise and efficient quantum-mechanical simulation approach, the first-principles calculation based on density-functional theory (DFT) has become a powerful way to study the thermodynamic and kinetic properties of materials on the atomic scale, as well as to clearly reveal the underlying microscopic mechanisms. In this review, we introduce the anticorrosion performance, existing problems, and optimization ways of Gr and h-BN coatings and summarize important recent DFT results on the critical and complex roles of coating defects and coating–substrate interfaces in governing their corrosion resistance. These DFT progresses have shed much light on the optimization ways towards better anticorrosion 2D coatings and also guided us to make a prospect on the further development directions and promising design schemes for superior anticorrosion ultrathin 2D coatings in the future.

2014 ◽  
Vol 28 (26) ◽  
pp. 1450204 ◽  
Author(s):  
Fayyaz Hussain ◽  
M. Imran ◽  
Y. Q. Cai ◽  
Hafeez Ullah ◽  
Abdul Shakoor ◽  
...  

Bulk ZnO has traditionally been regarded as multifunctional materials for energy and optoelectronics applications. Recently, exploring this material at the nanoscale has been reported and seeking a proper substrate is highly desired. In this work, the structural and electronic properties of graphene like ZnO two-dimensional (2D) monolayer are investigated by first principles calculation based on density functional theory. The alignment of the valence and conduction bands of ZnO with the state of Cu substrate is analyzed. Particularly the attention has been focused on the establishment of a Schottky contact and interfacial charge transfer between the 2D ZnO monolayer and Cu substrate. It is predicted that the electronic charges are accumulated on the Zn and O atoms due to d–d hybridization between Cu and Zn . Our study reveals that the significant interaction between the ZnO and Cu can greatly modify the electronic properties of the ZnO and suggests potential applications in nanoelectronic devices.


2004 ◽  
Vol 829 ◽  
Author(s):  
Matthew H. Evans ◽  
Xiaoguang Zhang ◽  
John D. Joannopoulos ◽  
Sokrates T. Pantelides

ABSTRACTUltrathin silicon-on-insulator (UTSOI) technology1 has emerged as a key candidate for sub-100nm gate length CMOS devices. Recent experiments have characterized MOSFETs with silicon channels as thin as 1nm (four atomic layers of silicon),2,3 and found them to be well-behaved electrically. Quantum effects are important to the electron transport in such devices, and the penetration of the electron wavefunction into the gate oxide introduces new scattering mechanisms. We introduce here a novel method for first-principles calculation of electron mobilities in ultrathin SOI channels, including surface roughness and defect scattering. The electronic structure and scattering potentials are calculated with Density Functional Theory in the Local Density Approximation (DFT-LDA), and the mobility is calculated through Green's functions. The method requires little computational effort beyond that of the DFT-LDA calculations, and allows the calculation of temperature- and carrier concentration-dependent mobilities. Since the silicon-oxide interface is treated at the atomic-scale, the mobility contributions of different defects (e.g. suboxide bonds, oxide protrusions) and impurities (e.g. nitrogen, hydrogen) can be calculated separately, giving a precise physical picture of channel electron transport.


2017 ◽  
Author(s):  
Lyudmyla Adamska ◽  
Sridhar Sadasivam ◽  
Jonathan J. Foley ◽  
Pierre Darancet ◽  
Sahar Sharifzadeh

Two-dimensional boron is promising as a tunable monolayer metal for nano-optoelectronics. We study the optoelectronic properties of two likely allotropes of two-dimensional boron using first-principles density functional theory and many-body perturbation theory. We find that both systems are anisotropic metals, with strong energy- and thickness-dependent optical transparency and a weak (<1%) absorbance in the visible range. Additionally, using state-of-the-art methods for the description of the electron-phonon and electron-electron interactions, we show that the electrical conductivity is limited by electron-phonon interactions. Our results indicate that both structures are suitable as a transparent electrode.


Author(s):  
Huai-Yang Sun ◽  
Shuo-Xue Li ◽  
Hong Jiang

Prediction of optical spectra of complex solids remains a great challenge for first-principles calculation due to the huge computational cost of the state-of-the-art many-body perturbation theory based GW-Bethe Salpeter equation...


Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2091 ◽  
Author(s):  
Tie Yang ◽  
Liyu Hao ◽  
Rabah Khenata ◽  
Xiaotian Wang

In this work, we systematically studied the structural, electronic, magnetic, mechanical and thermodynamic properties of the fully compensated spin-gapless inverse Heusler Ti2MnAl compound under pressure strain condition by applying the first-principles calculation based on density functional theory and the quasi-harmonic Debye model. The obtained structural, electronic and magnetic behaviors without pressure are well consistent with previous studies. It is found that the spin-gapless characteristic is destroyed at 20 GPa and then restored with further increase in pressure. While, the fully compensated ferromagnetism shows a better resistance against the pressure up to 30 GPa and then becomes to non-magnetism at higher pressure. Tetragonal distortion has also been investigated and it is found the spin-gapless property is only destroyed when c/a is less than 1 at 95% volume. Three independent elastic constants and various moduli have been calculated and they all show increasing tendency with pressure increase. Additionally, the pressure effects on the thermodynamic properties under different temperature have been studied, including the normalized volume, thermal expansion coefficient, heat capacity at constant volume, Grüneisen constant and Debye temperature. Overall, this theoretical study presents a detailed analysis of the physical properties’ variation under strain condition from different aspects on Ti2MnAl and, thus, can provide a helpful reference for the future work and even inspire some new studies and lead to some insight on the application of this material.


2014 ◽  
Vol 887-888 ◽  
pp. 378-383 ◽  
Author(s):  
Yu Chen ◽  
Zheng Jun Yao ◽  
Ping Ze Zhang ◽  
Dong Bo Wei ◽  
Xi Xi Luo ◽  
...  

The structure stability, mechanical properties and electronic structures of B2 phase FeAl intermetallic compounds and FeAl ternary alloys containing V, Cr or Ni were investigated using first-principles density functional theory calculations. Several models are established. The total energies, cohesive energies, lattice constants, elastic constants, density of states, and the charge densities of Fe8Al8 and Fe8XAl7 ( X=V, Cr, Ni ) are calculated. The stable crystal structures of alloy systems are determined due to the cohesive energy results. The calculated lattice contants of Fe-Al-X ( X= V, Cr, Ni) were found to be related to the atomic radii of the alloy elements. The calculation and analysis of the elastic constants showed that ductility of FeAl alloys was improved by the addition of V, Cr or Ni, the improvement was the highest when Cr was used. The order of the ductility was as follows: Fe8CrAl7 > Fe8NiAl7 > Fe8VAl7 > Fe8Al8. The results of electronic structure analysis showed that FeAl were brittle, mainly due to the orbital hybridization of the s, p and d state electron of Fe and the s and p state electrons of Al, showing typical characteristics of a valence bond. Micro-mechanism for improving ductility of FeAl is that d orbital electron of alloying element is maily involved in hybridization of FeAl, alloying element V, Cr and Ni decrease the directional property in bonding of FeAl.


2019 ◽  
Vol 16 (2) ◽  
pp. 77 ◽  
Author(s):  
Muhammad Zamir Mohyedin ◽  
Afiq Radzwan ◽  
Mohammad Fariz Mohamad Taib ◽  
Rosnah Zakaria ◽  
Nor Kartini Jaafar ◽  
...  

Bi2Se3 is one of the promising materials in thermoelectric devices and very useful out of environmental concern due to its efficiency to perform at room temperature. Based on the first-principles calculation of density functional theory (DFT) by using CASTEP computer code, structural and electronic properties of Bi2Se3 were investigated. The calculation is conducted within the exchange-correlation of local density approximation (LDA) and generalized gradient approximation within the revision of Perdew-Burke-Ernzerhof (GGA-PBE) functional. It was found that the results are consistent with previous works of theoretical study with small percentage difference. LDA exchange-correlation functional method is more accurate and have a better agreement than GGA-PBE to describe the structural properties of Bi2Se3 which consist of lattice parameters. LDA functional also shown more accurate electronic structure of Bi2Se3 that consist of band structure and density of states (DOS) which consistent with most previous theoretical works with small percentage difference. This study proves the reliability of CASTEP computer code and show LDA exchange-correlation functional is more accurate in describing the nature of Bi2Se3 compared to the other functionals.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Can Ding ◽  
Zhenjiang Gao ◽  
Xing Hu ◽  
Zhao Yuan

The contact is the core element of the vacuum interrupter of the mechanical DC circuit breaker. The electrical conductivity and welding resistance of the material directly affect its stability and reliability. AgSnO2 contact material has low resistivity, welding resistance, and so on. This material occupies an important position of the circuit breaker contact material. This research is based on the first-principles analysis method of density functional theory. The article calculated the lattice constant, enthalpy change, energy band, electronic density of state, charge density distribution, population, and conductivity of Ce, C single-doped, and Ce-C codoped SnO2 systems. The results show that Ce, C single doping, and Ce-C codoping all increase the cell volume and lattice constant. When the elements are codoped, the enthalpy change is the largest, and the thermal stability is the best. It has the smallest bandgap, the most impurity energy levels, and the least energy required for electronic transitions. The 4f orbital electrons of the Ce atom and the 2p orbital electrons of C are the sources of impurity energy near the Fermi level. When the elements are codoped, more impurity energy levels are generated at the bottom of the conduction band and the top of the valence band. Its bandgap is reduced so conductivity is improved. From the charge density and population analysis, the number of free electrons of Ce atoms and C atoms is redistributed after codoping. It forms a Ce-C covalent bond to further increase the degree of commonality of electrons and enhance the metallicity. The conductivity analysis shows that both single-doped and codoped conductivity have been improved. When the elements are codoped, the conductivity is the largest, and the conductivity is the best.


2021 ◽  
Vol 43 (6) ◽  
pp. 623-623
Author(s):  
Jingyi Shan Jingyi Shan ◽  
Xiangling Wang Xiangling Wang ◽  
Junkai Wang Junkai Wang ◽  
Shixuan Zhang Shixuan Zhang ◽  
Qianku Hu and Aiguo Zhou Qianku Hu and Aiguo Zhou

The selective adsorption and capture of CO2 from post-combustion gases carries huge significance for the reduction of greenhouse effect. In this research, the computations of density functional are performed to investigate the CO2 selective adsorption of S-doped graphene in thrall to applied electric field (E-F). Introducing the applied E-F, the adsorption between S-doped graphene and CO2 is strong chemisorption, and CO2 can be effectively captured. Removing the applied E-F, the adsorption restores to physisorption and CO2 is easily desorbed. Therefore, the CO2 seize and clearing can be realized merely by controlling the E-F. Besides, the adsorption energy of N2 (H2O) on S-decorated graphene is positive when introduce the applied E-F. The results demonstrated that S-doped graphene can selectively adsorb CO2 from the post-combustion gases by controlling the E-F.


Sign in / Sign up

Export Citation Format

Share Document