scholarly journals Infrared Thermography for Investigation of Surface Quality in Dry Finish Turning of Ti6Al4V

Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 154
Author(s):  
Manuela De Maddis ◽  
Vincenzo Lunetto ◽  
Valentino Razza ◽  
Pasquale Russo Spena

The machining of titanium alloys always raises issues because of their peculiar chemical and physical characteristics as compared to traditional steel or aluminum alloys. A proper selection of parameters and their monitoring during the cutting operation makes it possible to minimize the surface roughness and cutting force. In this experimental study, infrared thermography was used as a control parameter of the surface roughness of Ti6A4V in dry finish turning. An analysis of variance was carried out to determine the effect of the main cutting parameters (cutting speed and feed rate) on the surface roughness and cutting temperature. In the examined range of the machining parameters, cutting speed and feed were found to have a primary effect on the surface roughness of the machined parts. Cutting speed also significantly affected the temperature of the cutting region, while feed was of second order. Higher cutting speeds and intermediate feed values gave the best surface roughness. A regression analysis defined some models to relate the cutting temperature and surface roughness to the machining parameters. Infrared thermography demonstrated that the cutting temperature could be related to roughness.

2019 ◽  
Vol 287 ◽  
pp. 30-34
Author(s):  
Zwelinzima Mkoko ◽  
Khaled Abou-El-Hossein

In the globally competitive environment, surface roughness and finer tolerances are becoming stringent and certainly most critical for optical components. The aim of this study is to determine the effects of diamond turning process parameters on surface finish when diamond turning RSA 443 alloy having high silicon content. This alloy is a new grade of aluminum that has a potential to be used for production of various optical components. The experiments were conducted based on the Box-Behnken design with three diamond-turning parameters varied at three levels. A mathematical regression model was developed for predicting surface roughness. Further, the analysis of variance was used to analyze the influence of cutting parameters and their interaction in machining. The developed prediction model reveals that cutting speed and feed rate are the most dominant diamond turning factors influencing surface roughness.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 617 ◽  
Author(s):  
Ireneusz Zagórski ◽  
Jarosław Korpysa

Surface roughness is among the key indicators describing the quality of machined surfaces. Although it is an aggregate of several factors, the condition of the surface is largely determined by the type of tool and the operational parameters of machining. This study sought to examine the effect that particular machining parameters have on the quality of the surface. The investigated operation was the high-speed dry milling of a magnesium alloy with a polycrystalline diamond (PCD) cutting tool dedicated for light metal applications. Magnesium alloys have low density, and thus are commonly used in the aerospace or automotive industries. The state of the Mg surfaces was assessed using the 2D surface roughness parameters, measured on the lateral and the end face of the specimens, and the end-face 3D area roughness parameters. The description of the surfaces was complemented with the surface topography maps and the Abbott–Firestone curves of the specimens. Most 2D roughness parameters were to a limited extent affected by the changes in the cutting speed and the axial depth of cut, therefore, the results from the measurements were subjected to statistical analysis. From the data comparison, it emerged that PCD-tipped tools are resilient to changes in the cutting parameters and produce a high-quality surface finish.


Author(s):  
Alper Uysal

Polymer composite materials can be produced by reinforcing carbon black, carbon fiber, graphite, graphene, metals and metal oxides, nanotubes, and so on. These types of composite materials can be employed in applications demanding electrical conductivity besides high specific strength and stiffness properties of polymer materials. In the literature, there is a lack of knowledge on the examination of drilling of particle-reinforced composite materials. In this study, drilling of pure polypropylene and carbon black–reinforced polypropylene composite material was investigated at different drill point angles, cutting speeds, and feeds. The cutting temperature of drill point and surface roughness of holes were examined. The experimental studies were designed by L27 full-factorial design, and analysis of variance statistical method was performed. According to the results, cutting temperature increased and surface roughness decreased with the increase in the cutting speed and feed and decrease in the drill point angle.


2009 ◽  
Vol 407-408 ◽  
pp. 608-611 ◽  
Author(s):  
Chang Yi Liu ◽  
Cheng Long Chu ◽  
Wen Hui Zhou ◽  
Jun Jie Yi

Taguchi design methodology is applied to experiments of flank mill machining parameters of titanium alloy TC11 (Ti6.5A13.5Mo2Zr0.35Si) in conventional and high speed regimes. This study includes three factors, cutting speed, feed rate and depth of cut, about two types of tools. Experimental runs are conducted using an orthogonal array of L9(33), with measurement of cutting force, cutting temperature and surface roughness. The analysis of result shows that the factors combination for good surface roughness, low cutting temperature and low resultant cutting force are high cutting speed, low feed rate and low depth of cut.


2020 ◽  
Author(s):  
Yikun Yuan ◽  
Wenbin Ji ◽  
Shijie Dai ◽  
Huibo Zhang

Abstract To ensure accuracy and improve the processing efficiency of Ti–6Al–4V alloys, dry turning experiment of Ti–6Al–4V was carried out using a novel TiB2-based cermet tool. The tool was reinforced by nanoscale VC additive and exhibited excellent hardness and fracture toughness.Response Surface Methodology (RSM) was used in the experiment to verify andevaluatethe cutting performance ofTiB2-based cermet tool.The cutting forces and machined surface roughness (Ra) were selected as the optimization objective. An analysis of variance (ANOVA) was used to find out the effective machining parameters on response factorsand demonstrate correctness of the models. It was found that theeffective factor on surface roughness was feed rate, while cutting depth significantly affected cutting forces.And the confirmation experiments showedthat the predicted values were in good agreement with experimental values. Based on the optimized cutting parameters, the tool life was measured and tool wear mechanismwasinvestigated. When the vc, apandfwere 100 mm/min, 0.16 mm, 0.1 mm/rev respectively for Ra optimization, the cutting length and tool lifecould reach to 3233 m and 29.4 min, respectively, due to the excellentwear resistance and stability of TiB2-based cermet tool at high cutting temperature. In this case, the main wear mechanism was adhesive wear and diffusion wear.


Metals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 927 ◽  
Author(s):  
Irene Del Sol ◽  
Asuncion Rivero ◽  
Antonio J. Gamez

Nowadays, the industry looks for sustainable processes to ensure a more environmentally friendly production. For that reason, more and more aeronautical companies are replacing chemical milling in the manufacture of skin panels and thin plates components. This is a challenging operation that requires meeting tight dimensional tolerances and differs from a rigid body machining due to the low stiffness of the part. In order to fill the gap of literature research on this field, this work proposes an experimental study of the effect of the depth of cut, the feed rate and the cutting speed on the quality characteristics of the machined parts and on the cutting forces produced during the process. Whereas surface roughness values meet the specifications for all the machining conditions, an appropriate cutting parameters selection is likely to lead to a reduction of the final thickness deviation by up to 40% and the average cutting forces by up to a 20%, which consequently eases the clamping system and reduces machine consumption. Finally, an experimental model to control the process quality based on monitoring the machine power consumption is proposed.


2019 ◽  
Vol 43 (2) ◽  
pp. 248-255 ◽  
Author(s):  
Seyed Ali Niknam ◽  
Azziz Tiabi ◽  
Victor Songmene

Machining burrs are formed at all machined workpiece edges. One useful solution to decrease machining time and cost, in particular for milling parts, is to generate machined parts edges with minimum burr. This article proposes burr edge occupancy ηs as an index to evaluate deburring difficulty and, consequently, adequate selection of suitable deburring methods. Initially the sensitivity of ηs to cutting parameters must be evaluated. We investigated the main governing factors on ηs when slot milling two types of aluminium alloys (from different families) that are used in the automotive and aerospace industries. The cutting parameters that led to edges with minimum ηs are presented. It was found that, unlike most burr size attributes, ηs is sensitive to variation of the cutting parameters used: cutting speed, family of material, and cutting tools. Lower ηs means less time and effort for deburring and edge finishing of machined parts. Furthermore, ηs measurement is more convenient than the procedures used to measure other burr size attributes, including burr height (bh) and burr thickness (bt).


2017 ◽  
Vol 261 ◽  
pp. 321-327 ◽  
Author(s):  
Abidin Şahinoğlu ◽  
Şener Karabulut ◽  
Abdulkadir Güllü

In this study, the relationship between the spindle vibration and surface roughness was investigated and the effect of the cutting parameters on surface roughness and spindle vibration during the machining of Aluminum alloy 7075 (Al 7075) were determined. Experimental studies have been carried out on a CNC turning machine using coated cemented carbide cutting tools under dry cutting environment. L64 full factorial design of experiments was used to investigate the optimal machining parameters for spindle vibration and surface roughness. The influences of machining parameters on vibration and surface roughness were evaluated by using analysis of variance (ANOVA) and main effect plots. The results revealed that the feed rate was the most effective cutting parameters on spindle vibration and surface roughness. The machine tool vibration amplitude and surface roughness values were significantly increased with increasing cutting feed. The depth of cut and cutting speed have the least effect on the spindle vibration and indicated an insignificant effect on surface roughness. Mathematical equations were developed to predict the vibration and surface roughness values using the regression analysis.


2014 ◽  
Vol 903 ◽  
pp. 135-138
Author(s):  
Zahari Taha ◽  
Hadi Abdul Salaam ◽  
Phoon Sin Ye ◽  
Tuan Muhammad Yusoff Shah Tuan Ya

This paper presents a study on the effect of Ranque-Hilsch vortex tube air cooling on surface roughness quality and carbon footprint when turning mild steel workpiece with coated carbide cutting tool. The cutting parameters involved in this study were cutting speed, feed rate and depth of cut. The cutting speed and feed rate were fixed at 160 m/min and 0.10, 0.18 and 0.28 mm/rev, while the depth of cut was varied from 1.0 to 4.0 mm. During the turning process, the cutting temperatures were measured using infrared thermometer and the power consumption was measured using a power and harmonics analyzer and then converted into carbon footprint. The machined parts surface roughness were measured using a surface roughness tester. The results show that machining with Ranque - Hilsch vortex tube reduces the cutting temperature, but the surface roughness and carbon footprint is better under ambient condition except at a higher feedrate.


2013 ◽  
Vol 310 ◽  
pp. 348-351 ◽  
Author(s):  
Hadi Abdul Salaam ◽  
Phoon Sin Ye ◽  
Zahari Taha ◽  
Tuan Muhammad Yusoff Shah Tuan Ya

This paper presents a study of the effect of Ranque-Hilsch vortex tube air cooling on surface roughness quality and power consumption when turning mild steel material with coated carbide cutting tool. The cutting parameters involved in this study were cutting speed, feed rate and depth of cut. The cutting speed and feed rate were fixed at 160 m/min and 0.28 mm/rev, while the depth of cut was varied from 1.0 to 4.0 mm. During the turning process, the cutting temperatures were measured using an infrared thermometer and the power consumption was measured using a power and harmonics analyzer. The machined parts surface roughnesses were measured using a surface roughness tester. The results show that cooling using the Ranque-Hilsch vortex tube air cooling reduces the cutting temperature and the power consumption, but the surface roughness results is better when cooling with environment air.


Sign in / Sign up

Export Citation Format

Share Document